精英家教網 > 初中數學 > 題目詳情

【題目】如圖,矩形ABCD中,AB=3,BC=5,點P是BC邊上的一個動點(點P不與點B、C重合),現(xiàn)將△PCD沿直線PD折疊,使點C落到點C′處;作∠BPC′的角平分線交AB于點E.設BP=x,BE=y,則下列圖象中,能表示y與x的函數關系的圖象大致是( )

A.
B.
C.
D.

【答案】D
【解析】解:如圖,連接DE,∵△PC′D是△PCD沿PD折疊得到,
∴∠CPD=∠C′PD,
∵PE平分∠BPC′,
∴∠BPE=∠C′PE,
∴∠EPC′+∠DPC′= ×180°=90°,
∴△DPE是直角三角形,
∵BP=x,BE=y,AB=3,BC=5,
∴AE=AB﹣BE=3﹣y,CP=BC﹣BP=5﹣x,
在Rt△BEP中,PE2=BP2+BE2=x2+y2
在Rt△ADE中,DE2=AE2+AD2=(3﹣y)2+52 ,
在Rt△PCD中,PD2=PC2+CD2=(5﹣x)2+32 ,
在Rt△PDE中,DE2=PE2+PD2 ,
則(3﹣y)2+52=x2+y2+(5﹣x)2+32 ,
整理得,﹣6y=2x2﹣10x,
所以y=﹣ x2+ x(0<x<5),
縱觀各選項,只有D選項符合.
故選:D.

連接DE,根據折疊的性質可得∠CPD=∠C′PD,再根據角平分線的定義可得∠BPE=∠C′PE,然后證明∠DPE=90°,從而得到△DPE是直角三角形,再分別表示出AE、CP的長度,然后利用勾股定理進行列式整理即可得到y(tǒng)與x的函數關系式,根據函數所對應的圖象即可得解.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】西安市某中學九年級組織了一次數學計算比賽(禁用計算器),每班選25名同學參加比賽,成績分為A,B,C,D四個等級,其中A等級得分為100分,B等級得分為85分,C等級得分為75分,D等級得分為60分,數學教研組將九年級一班和二班的成績整理并繪制成如下的統(tǒng)計圖,請根據提供的信息解答下列問題.

(1)把一班競賽成績統(tǒng)計圖補充完整.

(2)填表:

平均數(分)

中位數(分)

眾數(分)

一班

   

   

85

二班

84

75

   

(3)請從以下給出的兩個方面對這次比賽成績的結果進行①從平均數、眾數方面來比較一班和二班的成績;②從B級以上(包括B級)的人數方面來比較一班和二班的成績.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,長方形OABC中,O為平面直角坐標系的原點,A點的坐標為C點的坐標為,點B在第一象限內,點P從原點出發(fā),以每秒2個單位長度的速度沿著的路線移動即:沿著長方形移動一周

寫出點B的坐標______

當點P移動了4秒時,描出此時P點的位置,并求出點P的坐標.

在移動過程中,當點Px軸距離為5個單位長度時,求點P移動的時間.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,ABCD,∠1=2,∠3=4

1)求證:ADBE;

2)若∠B=3=22,求∠D的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,以AB為直徑的⊙O經過點D,E是⊙O上一點,且∠AED=45°.
(1)試判斷CD與⊙O的位置關系,并證明你的結論;
(2)若⊙O的半徑為3,sin∠ADE= ,求AE的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知如圖,在數軸上有A、B兩點,所表示的數分別是n,n+6,A點以每秒5個單位長度的速度向右運動,同時點B以每秒3個單位長度的速度也向右運動,設運動時間為t.

(1)n=1時,經過tA點表示的數是_______,B點表示的數是______,AB=________;

(2)t為何值時,A、B兩點重合;

(3)在上述運動的過程中,若P為線段AB的中點,數軸上點C表示的數是n+10.是否存在t值,使得線段PC=4,若存在,求t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了豐富學生的課外活動,某校決定購買100個籃球和副羽毛球拍.經調查發(fā)現(xiàn):甲、乙兩個體育用品商店以同樣的價格出售同種品牌的籃球和羽毛球拍.已知每個籃球比每副羽毛球拍貴25元,兩個籃球與三副羽毛球拍的費用正好相等.經洽談,甲商店的優(yōu)惠方案是:每購買十個籃球,送一副羽毛球拍;乙商店的優(yōu)惠方案是:若購買籃球數超過80個,則購買羽毛球拍可打八折.

1)求每個籃球和每副羽毛球拍的價格分別是多少?

2)請用含的代數式分別表示出到甲商店和乙商店購買所花的費用;

3)請你決策:在哪家商店購買劃算?(直接寫出結論)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系xOy,直線y=x﹣1與y軸交于點A,與雙曲線y= 交于點B(m,2)
(1)求點B的坐標及k的值;
(2)將直線AB平移,使它與x軸交于點C,與y軸交于點D,若△ABC的面積為6,求直線CD的表達式.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖是小強洗漱時的側面示意圖,洗漱臺(矩形 )靠墻擺放,高 ,寬 ,小強身高 ,下半身 ,洗漱時下半身與地面成 ),身體前傾成 ),腳與洗漱臺距離 (點 , , 在同一直線上).

(1)此時小強頭部 點與地面 相距多少?
(2)小強希望他的頭部 恰好在洗漱盆 的中點 的正上方,他應向前或后退多少?
, ,結果精確到

查看答案和解析>>

同步練習冊答案