正方形ABCD和正方形EFGH的邊長分別為2
2
2
,對角線BD和FH都在直線l上,O1、O2分別是正方形的中心,線段O1O2的長叫做兩個正方形的中心距,當中心O2在直線l上平移時,正方形EFGH也隨之平移(其形狀大小沒有變化).(所謂正方形的中心,是指正方形兩條對角線的交點;兩個正方形的公共點,是指兩個正方形邊的公共點)
(1)當中心O2在直線l上平移到兩個正方形只有一個公共點時,中心距O1O2=
 
;
(2)設計表格完成問題:隨著中心O2在直線l上平移,兩個正方形的公共點精英家教網(wǎng)的個數(shù)的變化情況和相應的中心距的值或取值范圍.
分析:(1)先根據(jù)正方形的性質(zhì)求出正方形的對角線分別為BD=4,F(xiàn)H=2,所以可求得兩個正方形只有一個公共點時,中心距O1O2=O1D+O2F=2+1=3;
(2)根據(jù)它們隨著中心O2在直線l上平移,兩個正方形的公共點的個數(shù)的變化情況和相應的中心距之間的關系可依次求解.
解答:解:根據(jù)題意可知:BD=4,F(xiàn)H=2;
(1)兩個正方形只有一個公共點時,中心距O1O2=O1D+O2F=2+1=3;

(2)
O1O1 大于3 等于3 1<O1O2<3 等于1 0≤O1O2≤1
公共點的個數(shù) 0 1 2 無數(shù)個 0
點評:主要考查了正方形的性質(zhì)和平移的性質(zhì).要掌握正方形中一些特殊的性質(zhì):四邊相等,四角相等,對角線相等且互相垂直平分.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,直線l1:y=-x+1與兩直線l2:y=2x,l3:y=x分別相交于M、N兩點.設點P為x軸上的一點,過點P的直線l:y=-x+b與直線l2、l3分別交于A、C兩點,以線段AC為對角線作正方形ABCD.
(1)寫出正方形ABCD各頂點的坐標(用b表示);
(2)當點P從原點O出發(fā),沿著x軸的正方向運動時,設正方形ABCD和△OMN重疊部分的面積為S,求S與b之間的函數(shù)關系式,并寫出自變量b的取值范圍.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

課題學習:
(1)如圖1,E、F、G、H分別是正方形ABCD各邊的中點,則四邊形EFGH是
正方
正方
形,正方形ABCD的面積記為S1,EFGH的面積為S2,則S1和S2間的數(shù)量關系:
S1=2S2
S1=2S2
;
(2)如圖2,E、F、G、H分別是菱形ABCD各邊的中點,則四邊形EFGH是
形,菱形ABCD的面積為S1,EFGH的面積為S2,則S1和S2間的數(shù)量關系:
S1=2S2
S1=2S2

(3)如圖3,梯形ABCD中,AD∥BC,對角線AC⊥BD,垂足為O,E、F、G、H分別為各邊的中點.四邊形EFGH是
形;若梯形ABCD的面積記為S1,四邊形EFGH的面積記為S2,由圖可猜想S1和S2間的數(shù)量關系為:
S1=2S2
S1=2S2
;
(4)如圖4,E、G分別是平行四邊形ABCD的邊AB、DC的中點,H、F分別是邊形AD、BC上的點,且四邊形EFGH為平行四邊形,若把平行四邊形ABCD的面積記為S1,把平行四邊形形EFGH的面積記為S2,試猜想S1和S2間的數(shù)量關系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,直線l1:y=-x+1與兩直線l2:y=2x,l3:y=x分別相交于M、N兩點.設點P為x軸上的一點,過點P的直線l:y=-x+b與直線l2、l3分別交于A、C兩點,以線段AC為對角線作正方形ABCD.
(1)寫出正方形ABCD各頂點的坐標(用b表示);
(2)當點P從原點O出發(fā),沿著x軸的正方向運動時,設正方形ABCD和△OMN重疊部分的面積為S,求S與b之間的函數(shù)關系式,并寫出自變量b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年廣東省廣州市黃埔區(qū)中考數(shù)學一模試卷(解析版) 題型:解答題

如圖,直線l1:y=-x+1與兩直線l2:y=2x,l3:y=x分別相交于M、N兩點.設點P為x軸上的一點,過點P的直線l:y=-x+b與直線l2、l3分別交于A、C兩點,以線段AC為對角線作正方形ABCD.
(1)寫出正方形ABCD各頂點的坐標(用b表示);
(2)當點P從原點O出發(fā),沿著x軸的正方向運動時,設正方形ABCD和△OMN重疊部分的面積為S,求S與b之間的函數(shù)關系式,并寫出自變量b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年廣東省廣州市黃埔區(qū)中考數(shù)學二模試卷(解析版) 題型:解答題

(2009•黃埔區(qū)一模)如圖,直線l1:y=-x+1與兩直線l2:y=2x,l3:y=x分別相交于M、N兩點.設點P為x軸上的一點,過點P的直線l:y=-x+b與直線l2、l3分別交于A、C兩點,以線段AC為對角線作正方形ABCD.
(1)寫出正方形ABCD各頂點的坐標(用b表示);
(2)當點P從原點O出發(fā),沿著x軸的正方向運動時,設正方形ABCD和△OMN重疊部分的面積為S,求S與b之間的函數(shù)關系式,并寫出自變量b的取值范圍.

查看答案和解析>>

同步練習冊答案