反證法證明“三角形中至少有一個(gè)角不小于60°”先應(yīng)假設(shè)這個(gè)三角形中( )
A.有一個(gè)內(nèi)角小于60°
B.每個(gè)內(nèi)角都小于60°
C.有一個(gè)內(nèi)角大于60°
D.每個(gè)內(nèi)角都大于60°
【答案】分析:此題要運(yùn)用反證法,由題意先假設(shè)三角形的三個(gè)角都小于60°成立.然后推出不成立.得出選項(xiàng).
解答:解:設(shè)三角形的三個(gè)角分別為:a,b,c.
假設(shè),a<60°,b<60°,c<60°,
則a+b+c<60°+60°+60°,
即,a+b+c<180°與三角形內(nèi)角和定理a+b+c=180°矛盾.
所以假設(shè)不成立,即三角形中至少有一個(gè)角不小于60°.
故選B.
點(diǎn)評(píng):此題考查的知識(shí)點(diǎn)是反證法,解答此題的關(guān)鍵是由已知三角形中至少有一個(gè)角不小于60°假設(shè)都小于60°進(jìn)行論證.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

11、反證法證明“三角形中至少有一個(gè)角不小于60°”先應(yīng)假設(shè)這個(gè)三角形中( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

15、用反證法證明“三角形中至少有一個(gè)角不小于60°時(shí),假設(shè)“
三角形的三個(gè)內(nèi)角都小于60°
”,則與“
三角形的內(nèi)角和是180°
”矛盾,所以原命題正確.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

17、用反證法證明三角形中至少有一個(gè)角不小于60°,第一步應(yīng)假設(shè)
三角形的三個(gè)內(nèi)角都小于60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

用反證法證明“三角形中最多有一個(gè)是直角或鈍角”時(shí)應(yīng)假設(shè)
三角形中至少有兩個(gè)是直角或鈍角
三角形中至少有兩個(gè)是直角或鈍角

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

用反證法證明“三角形中必有一個(gè)內(nèi)角不小于60°”,應(yīng)當(dāng)先假設(shè)這個(gè)三角形中
三角形中每一個(gè)內(nèi)角都小于60°
三角形中每一個(gè)內(nèi)角都小于60°

查看答案和解析>>

同步練習(xí)冊(cè)答案