【題目】某工廠計劃生產(chǎn)兩種產(chǎn)品共60件,需購買甲、乙兩種材料.生產(chǎn)一件產(chǎn)品需甲種材料4千克;生產(chǎn)一件產(chǎn)品需甲、乙兩種材料各3千克.經(jīng)測算,購買甲、乙兩種材料各1千克共需資金60元;購買甲種材料2千克和乙種材料3千克共需資金155元.
(1)甲、乙兩種材料每千克分別是多少元?
(2)現(xiàn)工廠用于購買甲、乙兩種材料的資金不超過9900元,且生產(chǎn)產(chǎn)品不少于38件,問符合生產(chǎn)條件的生產(chǎn)方案有哪幾種?
(3)在(2)的條件下,若生產(chǎn)一件產(chǎn)品需加工費40元,生產(chǎn)一件產(chǎn)品需加工費50元,應(yīng)選擇哪種生產(chǎn)方案,使生產(chǎn)這60件產(chǎn)品的成本最低(成本=材料費+加工費)?
【答案】(1) 甲種材料每千克25元,乙種材料每千克35元;(2) 有三種方案;(3) 生產(chǎn)產(chǎn)品22件,產(chǎn)品38件成本最低
【解析】
(1)設(shè)甲材料每千克x元,乙材料每千克y元,根據(jù)購買甲、乙兩種材料各1千克共需資金60元;購買甲種材料2千克和乙種材料3千克共需資金155元,可列出方程組
,解方程組即可得到甲材料每千克25元,乙材料每千克35元;
(2)設(shè)生產(chǎn)A產(chǎn)品m件,生產(chǎn)B產(chǎn)品(60-m)件,先表示出生產(chǎn)這60件產(chǎn)品的材料費為25×4m+35×1m+25×3(60-m)+35×3(60-m)=-45m+10800,根據(jù)購買甲、乙兩種材料的資金不超過9900元得到-45m+10800≤9900,根據(jù)生產(chǎn)B產(chǎn)品不少于38件得到60-m≥38,然后解兩個不等式求出其公共部分得到20≤m≤22,而m為整數(shù),則m的值為20,21,22,易得符合條件的生產(chǎn)方案;
(3)設(shè)總生產(chǎn)成本為W元,加工費為:40m+50(60-m),根據(jù)成本=材料費+加工費得到W=-45m+10800+40m+50(60-m)=-55m+13800,根據(jù)一次函數(shù)的性質(zhì)得到W隨m的增大而減小,然后把m=22代入,即可得到最低成本的生產(chǎn)方案.
(1)設(shè)甲種材料每千克元,乙種材料每千克元,依題意得:
解得
答:甲種材料每千克25元,乙種材料每千克35元.
(2)生產(chǎn)產(chǎn)品件,生產(chǎn)產(chǎn)品件.依題意得:
解得.
的值為整數(shù),
的值為38,39,40.
共有三種方案:
(件) | 22 | 21 | 20 |
(件) | 38 | 39 | 40 |
(3)設(shè)生產(chǎn)成本為元,則
,
,隨的增大而增大.
當時,總成本最低.
答:生產(chǎn)產(chǎn)品22件,產(chǎn)品38件成本最低.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△BAD≌△EBC,∠BAD=∠BCE=90°,∠ABD=∠BEC=30°,點M為DE的中點,過點E與AD平行的直線交射線AM于點N.
(1)如圖1,當A,B,E三點在同一直線上時,判斷AC與CN數(shù)量關(guān)系為________;
(2)將圖1中△BCE繞點B逆時針旋轉(zhuǎn)到圖2位置時,(1)中的結(jié)論是否仍成立?若成立,試證明之,若不成立,請說明理由;
(3)將圖1中△BCE繞點B逆時針旋轉(zhuǎn)一周,旋轉(zhuǎn)過程中△CAN能否為等腰直角三角形?若能,直接寫出旋轉(zhuǎn)角度;若不能,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有一塊直角三角形紙片,兩直角邊AB=6,BC=8,將△ABC折疊,使AB落在斜邊AC上,折痕為AD,則BD的長為( )
A. 6B. 5C. 4D. 3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于數(shù)對(a,b)、(c,d),定義:當且僅當a=c且b=d時,(a,b)=(c,d);并定義其運算如下: (a,b)※(c,d)=(ac﹣bd,ad+bc),如(1,2)※(3,4)=(1×3﹣2×4,1×4+2×3)=(﹣5,10).若(x,y)※(1,﹣1)=(1,3),則xy的值是( )
A.﹣1
B.0
C.1
D.2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲,乙兩家汽車銷售公司根據(jù)近幾年的銷售量分別制作了如圖所示的統(tǒng)計圖,從2014~2018年,這兩家公司中銷售量增長較快的是_____公司(填“甲”或“乙”).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形中,對角線與交于點.過點作的平行線,過點作的平行線,兩直線相交于點.
(1)求證:四邊形是矩形;
(2)若,,則菱形的面積是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系網(wǎng)格中,△ABC的頂點都在格點上,點C坐標(0,-1).
作出△ABC 關(guān)于原點對稱的△A1B1C1,并寫出點A1的坐標;
把△ABC 繞點C逆時針旋轉(zhuǎn)90°,得△A2B2C2,畫出△A2B2C2,并寫出點A2的坐標;
(3)直接寫出△A2B2C2的面積
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了了解我縣中學生參加“科普知識”競賽成績的情況,隨機抽查了部分參賽學生的成績,整理并制作出如下的統(tǒng)計表和統(tǒng)計圖,如圖所示.請根據(jù)圖表信息解答下列問題.
組別 | 分數(shù)段(分) | 頻數(shù) | 百分率(%) |
A組 | 60≤x<70 | 30 | 10 |
B組 | 70≤x<80 | 90 | n |
C組 | 80≤x<90 | m | 40 |
D組 | 90≤x<100 | 60 | 20 |
(1)樣本容量a= ,表中m= ,n= ;
(2)補全頻數(shù)分布直方圖;
(3)若成績在80分以上(包括80分)為“優(yōu)”等,請你估計我縣參加“科普知識”競賽的1.5萬名學生中成績是“優(yōu)”等的約有多少人?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com