【題目】如圖,已知平行四邊形ABCD中,E為AD中點(diǎn),CE延長(zhǎng)線交BA延長(zhǎng)線于點(diǎn)F.
(1)求證:CD=AF;
(2)若BC=2CD,求證:∠F=∠BCF
【答案】(1)證明見解析;(2)證明見解析.
【解析】
(1)CD和AF分別在△DCE和△AFE中,要證它們相等,只需證△DCE≌△AFE,根據(jù)平行四邊形的性質(zhì)及E為AD中點(diǎn)可證.
(2)在平行四邊形中,對(duì)邊相等,由(1)的結(jié)論可證昨BF=BC,根據(jù)等邊對(duì)等角可證.
證明:(1)∵四邊形ABCD是平行四邊形,
∴AB∥DC.
∴∠DCE=∠AFE.
∵E是AD的中點(diǎn),
∴DE=AE.
在△DCE和△AFE中
,
∴△DCE≌△AFE.
∴CD=AF.
(2)由(1)得CD=AF,
∵AB=CD,
∴BF=AF+AB=2CD.
∵BC=2CD,
∴BF=BC.
∴∠F=∠BCF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰直角三角形ABC位于第一象限,AB=AC=2,直角頂點(diǎn)A在直線y=x上,其中A點(diǎn)的橫坐標(biāo)為1,且兩條直角邊AB、AC分別平行于x軸、y軸,若雙曲線(k≠0)與△ABC有交點(diǎn),則k的取值范圍是( )
A. 1≤k≤4 B. 1≤k<4 C. 1<k<2 D. 1≤k≤3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】八年級(jí)某班級(jí)部分同學(xué)去植樹,若每人平均植樹7棵,還剩9棵,若每人平均植樹9棵,則有1位同學(xué)植樹的棵數(shù)不到8棵.若設(shè)同學(xué)人數(shù)為x人,植樹的棵數(shù)為(7x+9)棵,下列各項(xiàng)能準(zhǔn)確的求出同學(xué)人數(shù)與種植的樹木的數(shù)量的是( 。
A. 7x+9≤8+9(x﹣1) B. 7x+9≥9(x﹣1)
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+2x+c經(jīng)過點(diǎn)A(0,3),B(-1,0),請(qǐng)回答下列問題:
(1)求拋物線對(duì)應(yīng)的二次函數(shù)的表達(dá)式;
(2)拋物線的頂點(diǎn)為D,對(duì)稱軸與x軸交于點(diǎn)E,連接BD,求BD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小張同學(xué)在計(jì)算時(shí),將“”錯(cuò)看成了“”,得出的結(jié)果是.
(1)請(qǐng)你求出這道題的正確結(jié)果;
(2)試探索:當(dāng)字母、滿足什么關(guān)系時(shí),(1)中的結(jié)果與字母的取值無關(guān).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在A地到B地的快速通道某隧道建設(shè),將由甲,乙兩個(gè)工程隊(duì)共同施工完成,據(jù)調(diào)查得知:甲,乙兩隊(duì)單獨(dú)完成這項(xiàng)上程所需天數(shù)之比為4:5,若先由甲,乙兩隊(duì)合作40天,剩下的工程再乙隊(duì)做10天完成,
(1)求甲.乙兩隊(duì)單獨(dú)完成這取工程各需多少天?
(2)若此項(xiàng)工程由甲隊(duì)做m天,乙隊(duì)n天完成,
①請(qǐng)用含m的式子表示n;
②已知甲隊(duì)每天的施工費(fèi)為15萬元,乙隊(duì)每天的施工費(fèi)用為10萬元,若工程預(yù)算的總費(fèi)用不超過1150萬元,甲隊(duì)工作的天數(shù)與乙隊(duì)工作的天數(shù)之和不超過90天.請(qǐng)問甲、乙兩隊(duì)各工作多少天,完成此項(xiàng)工程總費(fèi)用最少?最少費(fèi)用是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+1經(jīng)過A(-1,0),B(1,1)兩點(diǎn).
(1)求該拋物線的解析式;
(2)閱讀理解:
在同一平面直角坐標(biāo)系中,直線l1:y=k1x+b1(k1,b1為常數(shù),且k1≠0),直線l2:y=k2x+b2(k2,b2為常數(shù),且k2≠0),若l1⊥l2,則k1·k2=-1.
解決問題:
①若直線y=3x-1與直線y=mx+2互相垂直,求m的值;
②是否存在點(diǎn)P,使得△PAB是以AB為直角邊的直角三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;
(3)M是拋物線上一動(dòng)點(diǎn),且在直線AB的上方(不與A,B重合),求點(diǎn)M到直線AB的距離的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一副直角三角板(其中一個(gè)三角板的內(nèi)角是45°,45°,90°,另一個(gè)是30°,60°,90°)
(1)如圖①放置,AB⊥AD,∠CAE=_______,BC與AD的位置關(guān)系是__________;
(2)在(1)的基礎(chǔ)上,再拿一個(gè)30°,60°,90°的直角三角板,如圖②放置,將AC′邊和AD邊重合, AE是∠CAB′的角平分線嗎,如果是,請(qǐng)加以說明,如果不是,請(qǐng)說明理由.
(3)根據(jù)(1)(2)的計(jì)算,請(qǐng)解決下列問題:
如圖③∠BAD=90°,∠BAC=∠FAD= (是銳角),將一個(gè)45°,45°,90°直角三角板的一直角邊與AD邊重合,銳角頂點(diǎn)A與∠BAD的頂點(diǎn)重合,AE是∠CAF的角平分線嗎?如果是,請(qǐng)加以說明,如果不是,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com