【題目】如圖,在四邊形ABCD中,點H是BC的中點,作射線AH,在線段AH及其延長線上分別取點E,F(xiàn),連結(jié)BE,CF.

(1)請你添加一個條件,使得△BEH≌△CFH,你添加的條件是,并證明.
(2)在問題(1)中,當(dāng)BH與EH滿足什么關(guān)系時,四邊形BFCE是矩形,請說明理由.

【答案】
(1)解:添加條件:EH=FH,
∵點H是BC的中點,
∴BH=CH,
在△BEH和△CFH中,
,
∴△BEH≌△CFH(SAS).
(2)解:當(dāng)BH=EH時,四邊形BFCE是矩形,理由如下:
∵BH=CH,EH=FH,
∴四邊形BFCE是平行四邊形(對角線互相平分的四邊形為平行四邊形),
∵當(dāng)BH=EH時,
∴BC=EF,
∴平行四邊形BFCE為矩形(對角線相等的平行四邊形為矩形)
【解析】(1)解:添加條件:EH=FH;根據(jù)中點定義得BH=CH,再根據(jù)全等三角形判定SAS得△BEH≌△CFH.
(2)當(dāng)BH=EH時,四邊形BFCE是矩形,理由如下:根據(jù)對角線互相平分的四邊形為平行四邊形得四邊形BFCE是平行四邊形;再根據(jù)對角線相等的平行四邊形為矩形得平行四邊形BFCE為矩形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,GCD邊中點,連接AG并延長,分別交對角線BD于點F,交BC邊延長線于點E.若FG2,則AE的長度為( )

A. 6B. 8

C. 10D. 12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知∠1+2=180°,∠3=B,

求證:∠AED=ACB

證明:∠1+2=180°(已知),∠1+4=180° ),

∴∠2= ),

ABEF ),

∴∠3= ),

∵∠3=B(已知),

∴∠B= (等量代換),

DEBC ),

∴∠AED=ACB ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABBC,AE平分∠BADBC于點E,AEDE,∠1+2=90°,M、N分別是BA、CD延長線上的點,∠EAM和∠EDN的平分線交于點F,∠F的度數(shù)為( 。

A.120°B.135°C.150°D.不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD中,AB=2,∠BAD=60°,E是AB的中點,P是對角線AC上的一個動點,則PE+PB的最小值是( ).

A.1
B.2
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某單位認(rèn)真開展學(xué)習(xí)和實踐科學(xué)發(fā)展觀活動,在階段總結(jié)中提出對本單位今后的整改措施,并在征求職工對整改方案的滿意程度時進行民主測評,測評等級為:很滿意、較滿意、滿意、不滿意四個等級.

1)若測評后結(jié)果如扇形圖(圖①),且測試等級為很滿意、較滿意、滿意、不滿意的人數(shù)之比為2541,則圖中a= ° ,β= °.

2)若測試后部分統(tǒng)計結(jié)果如直方圖(圖②),請將直方圖補畫完整,并求出該單位職工總?cè)藬?shù)為 人.

3)按上級要求,滿意度必須不少于95%方案才能通過,否則,必須對方案進行完善.若要使該方案完善后能獲得通過,至少還需增加 人對該方案的測評等級達(dá)滿意(含滿意)以上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖1,若AB∥CD,則∠B+∠D=∠E,你能說明理由嗎?

(2)反之,若∠B+∠D=∠E,直線AB與CD有什么位置關(guān)系?

(3)若將點E移至圖2的位置,此時∠B,∠D,∠E之間有什么關(guān)系?

(4)若將點E移至圖3的位置,此時∠B,∠D,∠E之間的關(guān)系又如何?

(5)在圖4中,AB∥CD,∠E+∠G與∠B+∠F+∠D之間有何關(guān)系?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,AD平行BC,∠ABC=90°,AD=2,AB=6,以AB為直徑的半⊙O 切CD于點E,F(xiàn)為弧BE上一動點,過F點的直線MN為半⊙O的切線,MN交BC于M,交CD于N,則△MCN的周長為(  )

A.9
B.10
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線與x軸交于點(﹣1,0)和(3,0),與y軸交于點(0,﹣3)則此拋物線對此函數(shù)的表達(dá)式為( )

A.y=x2+2x+3
B.y=x2﹣2x﹣3
C.y=x2﹣2x+3
D.y=x2+2x﹣3

查看答案和解析>>

同步練習(xí)冊答案