如圖,若圓心角∠ABC=100°,則圓周角∠ADC=________°.

130
分析:在優(yōu)弧AEC上取點E,連接AE,CE,利用在同圓或等圓中,同弧或等弧所對的圓周角等于這條弧所對的圓心角的一半,即可求得∠E的度數(shù),又由圓的內(nèi)接四邊四邊形的對角互補,即可求得圓周角∠ADC的度數(shù).
解答:解:如圖:在優(yōu)弧AEC上取點E,連接AE,CE,
∴∠AEC=∠ABC=×100°=50°,
∵四邊形AECD是⊙O的內(nèi)接四邊形,
∴∠ADC=180°-∠AEC=130°.
故答案為:130.
點評:此題考查了圓周角定理與圓的內(nèi)接四邊形的性質(zhì).此題難度不大,解題的關(guān)鍵是掌握在同圓或等圓中,同弧或等弧所對的圓周角等于這條弧所對的圓心角的一半與圓的內(nèi)接四邊四邊形的對角互補定理的應(yīng)用,注意輔助線的作法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•湖州模擬)如圖,若弧AB半徑PA為18,圓心角為120°,半徑為2的⊙O,從弧AB的一個端點A(切點)開始先在外側(cè)滾動到另一個端點B(切點),再旋轉(zhuǎn)到內(nèi)側(cè)繼續(xù)滾動,最后轉(zhuǎn)回到初始位置,⊙O自轉(zhuǎn)的周數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)如圖①,已知弧AB,用尺規(guī)作圖,作出弧AB的圓心P;
(2)如圖②,若弧AB半徑PA為18,圓心角為120°,半徑為2的⊙O,從弧AB的一個端點A(切點)開始先在外側(cè)滾動到另一個端點B(切點),再旋轉(zhuǎn)到內(nèi)側(cè)繼續(xù)滾動,最后轉(zhuǎn)回到初始位置,⊙O自轉(zhuǎn)多少周?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆浙江省寧波市五校九年級3月聯(lián)考數(shù)學(xué)試卷(帶解析) 題型:單選題

如圖,若弧AB半徑PA為18,圓心角為120°,半徑為2的⊙,從弧AB的一個端點A(切點)開始先在外側(cè)滾動到另一個端點B(切點),再旋轉(zhuǎn)到內(nèi)側(cè)繼續(xù)滾動,最后轉(zhuǎn)回到初始位置,⊙自轉(zhuǎn)的周數(shù)是

A.5周B.6周    C.7周   D.8周

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省寧波市五校九年級3月聯(lián)考數(shù)學(xué)試卷(解析版) 題型:選擇題

如圖,若弧AB半徑PA為18,圓心角為120°,半徑為2的⊙,從弧AB的一個端點A(切點)開始先在外側(cè)滾動到另一個端點B(切點),再旋轉(zhuǎn)到內(nèi)側(cè)繼續(xù)滾動,最后轉(zhuǎn)回到初始位置,⊙自轉(zhuǎn)的周數(shù)是

A.5周             B.6周          C.7周           D.8周

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省杭州市惠興中學(xué)九年級(下)月考數(shù)學(xué)試卷(3月份)(解析版) 題型:解答題

(1)如圖①,已知弧AB,用尺規(guī)作圖,作出弧AB的圓心P;
(2)如圖②,若弧AB半徑PA為18,圓心角為120°,半徑為2的⊙O,從弧AB的一個端點A(切點)開始先在外側(cè)滾動到另一個端點B(切點),再旋轉(zhuǎn)到內(nèi)側(cè)繼續(xù)滾動,最后轉(zhuǎn)回到初始位置,⊙O自轉(zhuǎn)多少周?

查看答案和解析>>

同步練習(xí)冊答案