精英家教網 > 初中數學 > 題目詳情
圓中的最值問題

如圖,點A是半圓上一個三等分點,點B是的中點,點P是半徑ON上的動點.若⊙O的半徑為1,則AP+BP的最小值為________.

分析:解決此問題的數學模型是:在直線l的同側有兩定點A、B,試在直線l上確定一點P,使AP+BP最。@就要用到軸對稱和“兩點之間,線段最短”的知識點.

作點B關于MN的對稱點,連結,交MN于點P,則此時AP+BP的值最小.

請根據以上分析求出AP+BP的最小值.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

探究問題:
(1)閱讀理解:
①如圖(A),在已知△ABC所在平面上存在一點P,使它到三角形頂點的距離之和最小,則稱點P為△ABC的費馬點,此時PA+PB+PC的值為△ABC的費馬距離;
②如圖(B),若四邊形ABCD的四個頂點在同一圓上,則有AB•CD+BC•DA=AC•BD.此為托勒密定理;
精英家教網
(2)知識遷移:
①請你利用托勒密定理,解決如下問題:
如圖(C),已知點P為等邊△ABC外接圓的
BC
上任意一點.求證:PB+PC=PA;
②根據(2)①的結論,我們有如下探尋△ABC(其中∠A、∠B、∠C均小于120°)的費馬點和費馬距離的方法:
第一步:如圖(D),在△ABC的外部以BC為邊長作等邊△BCD及其外接圓;
第二步:在
BC
上任取一點P′,連接P′A、P′B、P′C、P′D.易知P′A+P′B+P′C=P′A+(P′B+P′C)=P′A+
 
;
第三步:請你根據(1)①中定義,在圖(D)中找出△ABC的費馬點P,并請指出線段
 
的長度即為△ABC的費馬距離.
精英家教網
(3)知識應用:
2010年4月,我國西南地區(qū)出現(xiàn)了罕見的持續(xù)干旱現(xiàn)象,許多村莊出現(xiàn)了人、畜飲水困難,為解決老百姓的飲水問題,解放軍某部來到云南某地打井取水.
已知三村莊A、B、C構成了如圖(E)所示的△ABC(其中∠A、∠B、∠C均小于120°),現(xiàn)選取一點P打水井,使從水井P到三村莊A、B、C所鋪設的輸水管總長度最小,求輸水管總長度的最小值.
精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

唐朝詩人李欣的詩《古從軍行》開頭兩句說:“白日登山望峰火,黃昏飲馬傍交河.”詩中隱含著一個有趣的數學問題--將軍飲馬問題:
如圖1所示,詩中將軍在觀望烽火之后從山腳下的A點出發(fā),走到河旁邊的P點飲馬后再到B點宿營.請問怎樣走才能使總的路程最短?
作法如下:如(1)圖,從B出發(fā)向河岸引垂線,垂足為D,在AP的延長線上,取B關于河岸的對稱點B′,連接AB′,與河岸線相交于P,則P點就是飲馬的地方,將軍只要從A出發(fā),沿直線走到P,飲馬之后,再由P沿直線走到B,所走的路程就是最短的.
(1)觀察發(fā)現(xiàn)
再如(2)圖,在等腰梯形ABCD中,AB=CD=AD=2,∠D=120°,點E、F是底邊AD與BC的中點,連接EF,在線段EF上找一點P,使BP+AP最短.
作點B關于EF的對稱點,恰好與點C重合,連接AC交EF于一點,則這點就是所求的點P,故BP+AP的最小值為
 

精英家教網
(2)實踐運用
如(3)圖,已知⊙O的直徑MN=1,點A在圓上,且∠AMN的度數為30°,點B是弧AN的中點,點P在直徑MN上運動,求BP+AP的最小值.
精英家教網
(3)拓展遷移
如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為x=1,且拋物線經過A(-1,0)、C(0,-3)兩點,與x軸交于另一點B.
①求這條拋物線所對應的函數關系式;
②在拋物線的對稱軸直線x=1上找到一點M,使△ACM周長最小,請求出此時點M的坐標與△ACM周長最小值.(結果保留根號)
精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•太倉市二模)探究與應用.試完成下列問題:
(1)如圖①,已知等腰Rt△ABC中,∠C=90°,點O為AB的中點,作∠POQ=90°,分別交AC、BC于點P、Q,連結PQ、CO,求證:AP2+BQ2=PQ2;
(2)如圖②,將等腰Rt△ABC改為任意直角三角形,點O仍為AB的中點,∠POQ=90°,試探索上述結論AP2+BQ2=PQ2是否仍成立;
(3)通過上述探究(可直接運用上述結論),試解決下面的問題:如圖③,已知Rt△ABC中,∠C=90°,AC=6,BC=8,點O為AB的中點,過C、O兩點的圓分別交AC、BC于P、Q,連結PQ,求△PCQ面積的最大值.

查看答案和解析>>

科目:初中數學 來源: 題型:

唐朝詩人李欣的詩《古從軍行》開頭兩句說:“白日登山望峰火,黃昏飲馬傍交河.”詩中隱含著一個有趣的數學問題--將軍飲馬問題:
如圖1所示,詩中將軍在觀望烽火之后從山腳下的A點出發(fā),走到河旁邊的P點飲馬后再到B點宿營.請問怎樣走才能使總的路程最短?
做法如下:如圖1,從B出發(fā)向河岸引垂線,垂足為D,在AD的延長線上,取B關于河岸的對稱點B′,連接AB′,與河岸線相交于P,則P點就是飲馬的地方,將軍只要從A出發(fā),沿直線走到P,飲馬之后,再由P沿直線走到B,所走的路程就是最短的.
(1)觀察發(fā)現(xiàn)
再如圖2,在等腰梯形ABCD中,AB=CD=AD=2,∠D=120°,點E、F是底邊AD與BC的中點,連接EF,在線段EF上找一點P,使BP+AP最短.
作點B關于EF的對稱點,恰好與點C重合,連接AC交EF于一點,則這點就是所求的點P,故BP+AP的最小值為
2
3
2
3

(2)實踐運用
如圖3,已知⊙O的直徑MN=1,點A在圓上,且∠AMN的度數為30°,點B是弧AN的中點,點P在直徑MN上運動,求BP+AP的最小值.
(3)拓展遷移
如圖4,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為x=1,且拋物線經過A(-1,0)、C(0,-3)兩點,與x軸交于另一點B.
①求這條拋物線所對應的函數關系式;
②在拋物線的對稱軸直線x=1上找到一點M,使△ACM周長最小,請求出此時點M的坐標與△ACM周長最小值.(結果保留根號)

查看答案和解析>>

同步練習冊答案