【題目】鄰邊不相等的平行四邊形紙片,剪去一個(gè)菱形,余下一個(gè)四邊形,稱(chēng)為第一次操作;在余下的四邊形紙片中再剪去一個(gè)菱形,又余下一個(gè)四邊形,稱(chēng)為第二次操作;……依此類(lèi)推,若第n次操作余下的四邊形是菱形,則稱(chēng)原平行四邊形為n階準(zhǔn)菱形.如圖1,ABCD中,若AB=1,BC=2,則ABCD1階準(zhǔn)菱形.

(1)判斷與推理:

①鄰邊長(zhǎng)分別為23的平行四邊形是 階準(zhǔn)菱形;

②小明為了剪去一個(gè)菱形,進(jìn)行如下操作:如圖2,把ABCD沿BE折疊(點(diǎn)EAD上),使點(diǎn)A落在BC邊上的點(diǎn)F,得到四邊形ABFE.請(qǐng)證明四邊形ABEF是菱形.

(2)操作、探究與計(jì)算:

①已知ABCD是鄰邊長(zhǎng)分別為1,a(a>1),且是3階準(zhǔn)菱形,請(qǐng)畫(huà)出ABCD及裁剪線(xiàn)的示意圖,并在圖形下方寫(xiě)出a的值;

②已知ABCD的鄰邊長(zhǎng)分別為a,b(a>b),滿(mǎn)足a=6b+r,b=5r(r>0),則ABCD

階準(zhǔn)菱形

【答案】(1)①2;②見(jiàn)解析(2)①見(jiàn)解析;②10.理由:

②因?yàn)閍=6b+r,b=5r,所以a=6×5r+r=31r,b=5r,如圖所示,平行四邊形ABCD是10階準(zhǔn)菱形.

【解析】整體分析:

(1)①準(zhǔn)菱形的定義回答;由平行線(xiàn)+角平分線(xiàn)的結(jié)構(gòu)證明△ABE是等腰三角形;(2)①準(zhǔn)菱形的定義及菱形的判定畫(huà)圖;找出ab的數(shù)量關(guān)系,畫(huà)出圖形.

:(1)①2;

②由折疊知:∠ABE=FBE,AB=BF,

∵四邊形ABCD是平行四邊形,

AEBF,∴∠AEB=FBE,

∴∠AEB=ABE,AE=AB,

AE=BF,

∴四邊形ABFE是平行四邊形,

∴四邊形ABFE是菱形;

(2)①如圖所示:

②因?yàn)?/span>a=6b+r,b=5r,所以a=6×5r+r=31r,b=5r,如圖所示,平行四邊形ABCD10階準(zhǔn)菱形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線(xiàn)y=kx+6與x軸、y軸分別交于點(diǎn)E、F,點(diǎn)E的坐標(biāo)為(﹣8,0),點(diǎn)A的坐標(biāo)為(﹣6,0).

(1)求k的值;

(2)若點(diǎn)P(x,y)是第二象限內(nèi)的直線(xiàn)上的一個(gè)動(dòng)點(diǎn),在點(diǎn)P的運(yùn)動(dòng)過(guò)程中,試寫(xiě)出OPA的面積S與x的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;

(3)探究:在(2)的情況下,當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),OPA的面積為,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】低碳生活備受關(guān)注.小明為了了解人們到某超市購(gòu)物時(shí)使用購(gòu)物袋的情況,利用星期日到該超市對(duì)部分購(gòu)物者進(jìn)行調(diào)查,并把調(diào)查結(jié)果繪制成兩幅不完整的統(tǒng)計(jì)圖.假設(shè)當(dāng)天每人每次購(gòu)物時(shí)都只用一個(gè)環(huán)保購(gòu)物袋(可降解)或塑料購(gòu)物袋(不可降解).

根據(jù)以上信息,回答下列問(wèn)題:

1)小明這次調(diào)查到的購(gòu)物人數(shù)是    人次;

2)補(bǔ)全兩幅統(tǒng)計(jì)圖;

3)若當(dāng)天到該超市購(gòu)物者共有2000人次,請(qǐng)你估計(jì)使用塑料購(gòu)物袋有      人次;環(huán)保購(gòu)物袋有 人次;扇形C的圓心角是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,若M=a+b﹣c,N=4a﹣2b+c,P=2a﹣b.則M,N,P中,值小于0的數(shù)有(
A.3個(gè)
B.2個(gè)
C.1個(gè)
D.0個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解決小區(qū)停車(chē)難的問(wèn)題,某小區(qū)準(zhǔn)備新建50個(gè)停車(chē)位,已知新建1個(gè)地上停車(chē)位和1個(gè)地下停車(chē)位需0.5萬(wàn)元,新建3個(gè)地上停車(chē)位和2個(gè)地下停車(chē)位需1.1萬(wàn)元.

(1)該小區(qū)新建1個(gè)地上停車(chē)位和1個(gè)地下停車(chē)位各需多少萬(wàn)元?

(2)根據(jù)實(shí)際情況,該小區(qū)新建地上停車(chē)位不多于33個(gè),且預(yù)計(jì)投資金額不超過(guò)11萬(wàn)元,共有幾種建造方式?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,過(guò)對(duì)角線(xiàn)BD上一點(diǎn)P,作EFBC,HGAB,若四邊形AEPH和四邊形CFPG的面積分另為S1和S2,則S1與S2的大小關(guān)系為( 。

AS1=S2 BS1>S2 CS1<S2 D不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】農(nóng)夫?qū)⑻O(píng)果樹(shù)種在正方形的果園內(nèi),為了保護(hù)蘋(píng)果樹(shù)不受風(fēng)吹,他在蘋(píng)果樹(shù)的周?chē)N上針葉樹(shù).在下圖里,你可以看到農(nóng)夫所種植蘋(píng)果樹(shù)的列數(shù)(n)和蘋(píng)果樹(shù)數(shù)量及針葉樹(shù)數(shù)量的規(guī)律:當(dāng)n為某一個(gè)數(shù)值時(shí),蘋(píng)果樹(shù)數(shù)量會(huì)等于針葉樹(shù)數(shù)量,則n(  )

A. 6 B. 8 C. 12 D. 16

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為促進(jìn)我市經(jīng)濟(jì)的快速發(fā)展,加快道路建設(shè),某高速公路建設(shè)工程中需修隧道AB,如圖,在山外一點(diǎn)C測(cè)得BC距離為200m,∠CAB=54°,∠CBA=30°,求隧道AB的長(zhǎng).(參考數(shù)據(jù):sin54°≈0.81,cos54°≈0.59,tan54°≈1.38, ≈1.73,精確到個(gè)位)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列材料并填空在體育比賽中我們常常會(huì)遇到計(jì)算比賽場(chǎng)次的問(wèn)題,這時(shí)我們可以借助數(shù)線(xiàn)段的方法來(lái)計(jì)算.比如在一個(gè)小組中有 4 個(gè)隊(duì),進(jìn)行單循環(huán)比賽我們要計(jì)算總的比賽場(chǎng)次,我們就 設(shè)這四個(gè)隊(duì)分別為 A、B、C、D,并把它們標(biāo)在同一條線(xiàn)段上,如下圖:

因?yàn)閱窝h(huán)比賽就是每?jī)蓚(gè)隊(duì)之間都要比賽一場(chǎng),這就相當(dāng)于,在上述圖形中四個(gè)點(diǎn)連接線(xiàn)段按一定規(guī)律得到的線(xiàn)段有:

AB,AC,AD…………3

BC,BD………………2

CD……………………1

總的線(xiàn)段條數(shù)是 3+2+1=6

所以可知 4 個(gè)隊(duì)進(jìn)行單循環(huán)比賽共比賽六場(chǎng).

(1).類(lèi)比上述想法,若一個(gè)小組有 6 個(gè)隊(duì),進(jìn)行單循環(huán)比賽則總的比賽場(chǎng)次是_____

(2).類(lèi)比上述想法,若一個(gè)小組有 n 個(gè)隊(duì),進(jìn)行單循環(huán)比賽,則總的比賽場(chǎng)次是_____

(3).我們知道 2006 年世界杯共有 32 支代表隊(duì)參加比賽,共分成 8 個(gè)小組,每組 4 個(gè) 代表隊(duì).第一階段每個(gè)小組進(jìn)行單循環(huán)比賽.則第一階段共 進(jìn) _______ 場(chǎng)比賽.

(4).若分成 m 個(gè)小組,每個(gè)小組有 n 個(gè)隊(duì),第一階段每個(gè)小組進(jìn)行單循環(huán)比賽.則第 一階段共需要進(jìn)行_____________場(chǎng)比賽.

查看答案和解析>>

同步練習(xí)冊(cè)答案