【題目】已知:正方形ABCD中,∠MAN=45°,∠MAN繞點(diǎn)A順時(shí)針旋轉(zhuǎn),它的兩邊分別交CB,DC(或它們的延長(zhǎng)線)于點(diǎn)M,N.當(dāng)∠MAN繞點(diǎn)A旋轉(zhuǎn)到BM=DN時(shí)(如圖1),易證BM+DN=MN

(1)當(dāng)∠MAN繞點(diǎn)A旋轉(zhuǎn)到BM≠DN時(shí)(如圖2),線段BM,DNMN之間有怎樣的數(shù)量關(guān)系?寫出猜想,并加以證明.

(2)當(dāng)∠MAN繞點(diǎn)A旋轉(zhuǎn)到如圖3的位置時(shí),線段BMDNMN之間又有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫出你的猜想.

【答案】(1)BM+DN=MN成立.(2)DN-BM=MN.

【解析】試題分析:(1)、在MB的延長(zhǎng)線上,截得BE=DN,連接AE得到△ABE≌△AND,從而得到AE=AN,然后證明△AEM≌△ANM,得到ME=MN,從而得出答案;(2)、在DC上截取DF=BM,連接AF得到△ABM≌△ADF,然后證明△MAN≌△FAN,得到所求的答案.

試題解析:(1)、BMDN=MN成立.

如下圖1,在MB的延長(zhǎng)線上,截得BE=DN,連接AE,易證:△ABE≌△AND∴AE=AN

∴∠EAB=∠NMD∴∠BAD=90°,∠NAM=45°

∴∠BAM+∠NMD=45°∴∠EAB+∠BAM=45°∴∠EAM=∠NAMAM為公共邊,∴△AEM≌△ANM,

∴ME=MN∴ME=BEBM=DNBM.∴DN+BM=MN.

2)、DNBMMN

如圖2,在DC上截取DF=BM,連接AF∵AB=AD,∠ABM=∠ADF=90°∴△ABM≌△ADFSAS

∴AM=AF,∠MAB=∠FAD∴∠MAB+∠BAF=∠FAD+∠BAF=90°,即∠MAF=∠BAD=90°

∠MAN=45°∴∠NAF=∠MAN=45°∵AN=AN,∴△MAN≌△FAN∴MN=FN,即MN=DNDF=DNBM;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C為⊙O上一點(diǎn),ADCD,(點(diǎn)D在⊙O外)AC平分∠BAD

(1)求證:CD是⊙O的切線;

(2)若DC、AB的延長(zhǎng)線相交于點(diǎn)E,且DE=12,AD=9,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形OABC在平面直角坐標(biāo)系中的位置如圖所示,A、C兩點(diǎn)的坐標(biāo)分別為A(6,0)、C(0,3),直線與BC邊相交于點(diǎn)D.

(1)求點(diǎn)D的坐標(biāo);

(2)若拋物線經(jīng)過A、D兩點(diǎn),試確定此拋物線的解析式;

(3)設(shè)(2)中的拋物線的對(duì)稱軸與直線AD交于點(diǎn)M,點(diǎn)P為對(duì)稱軸上一動(dòng)點(diǎn),以P、A、M為頂點(diǎn)的三角形與ABD相似,求符合條件的所有點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某家電生產(chǎn)企業(yè)根據(jù)市場(chǎng)調(diào)查分析,決定調(diào)整產(chǎn)品生產(chǎn)方案,準(zhǔn)備每周(按120個(gè)工時(shí)計(jì)算)生產(chǎn)空調(diào)、冰箱、彩電共360臺(tái),且彩電至少生產(chǎn)60臺(tái),已知生產(chǎn)這些家電產(chǎn)品每臺(tái)所需工時(shí)和每臺(tái)產(chǎn)值如下表:

問每周應(yīng)生產(chǎn)空調(diào)、冰箱、彩電各多少臺(tái),才能使產(chǎn)值最高?最高產(chǎn)值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】趙爽弦圖是由四個(gè)全等的直角三角形與中間的一個(gè)小正方形拼成的一個(gè)大正方形,如圖所示,若這四個(gè)全等直角三角形的兩條直角邊分別平行于x軸和y軸,大正方形的頂點(diǎn)B1、C1、C2、C3、…、Cn在直線y=﹣上,頂點(diǎn)D1、D2、D3、…、Dn在x軸上,則第n個(gè)陰影小正方形的面積為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果|a+1|+(b1)20,則a2000+b2001_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】x1,x2,x3的平均數(shù)為3,5x1+1,5x2+2,5x3+3的平均數(shù)為__.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,AB=5,AC=6,BD=8.

(1)求證:四邊形ABCD是菱形;

(2)過點(diǎn)AAH⊥BC于點(diǎn)H,求AH的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,平行四邊形OABC的頂點(diǎn)A,B的坐標(biāo)分別為(6,0),(7,3),將平行四邊形OABC繞點(diǎn)O逆時(shí)針方向旋轉(zhuǎn)得到平行四邊形OA′B′C′,當(dāng)點(diǎn)C′落在BC的延長(zhǎng)線上時(shí),線段OA′交BC于點(diǎn)E,則線段C′E的長(zhǎng)度為__

查看答案和解析>>

同步練習(xí)冊(cè)答案