【題目】如圖,梯形中,,點分別是的中點. 已知兩底之差是6,兩腰之和是12,則的周長是____.

【答案】9.

【解析】

延長EFBC于點H,可知EFFH,FGEG分別為BDC、ABC、BDCACD的中位線,由三角形中位線定理結(jié)合條件可求得EF+FG+EG,可求得答案.

連接AE,并延長交CDK

ABCD,

∴∠BAE=DKE,∠ABD=EDK,

∵點E、F、G分別是BDAC、DC的中點.

BE=DE

AEBKED中,

,

∴△AEB≌△KEDAAS),

DK=ABAE=EK,EFACK的中位線,

EF=CK=DC-DK=DC-AB),

EGBCD的中位線,∴EG=BC

FGACD的中位線,∴FG=AD

EG+GF=AD+BC),

∵兩腰和是12,即AD+BC=12,兩底差是6,即DC-AB=6,

EG+GF=6FE=3,

∴△EFG的周長是6+3=9

故答案為:9

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某日的錢塘江觀潮信息如圖:

按上述信息,小紅將交叉潮形成后潮頭與乙地之間的距離s(千米)與時間t(分鐘)的函數(shù)關(guān)系用圖3表示,其中:“11:40時甲地交叉潮的潮頭離乙地12千米記為點A(0,12),點B坐標為(m,0),曲線BC可用二次函數(shù)s=t2+bt+c(b,c是常數(shù))刻畫.

(1)求m的值,并求出潮頭從甲地到乙地的速度;

(2)11:59時,小紅騎單車從乙地出發(fā),沿江邊公路以0.48千米/分的速度往甲地方向去看潮,問她幾分鐘后與潮頭相遇?

(3)相遇后,小紅立即調(diào)轉(zhuǎn)車頭,沿江邊公路按潮頭速度與潮頭并行,但潮頭過乙地后均勻加速,而單車最高速度為0.48千米/分,小紅逐漸落后.問小紅與潮頭相遇到落后潮頭1.8千米共需多長時間?(潮水加速階段速度v=v0+(t﹣30),v0是加速前的速度).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料:AB在數(shù)軸上分別表示有理數(shù)a、b,表示A、B兩點之間的距離。當A、B兩點中有一點在原點時(假設(shè)A在原點),如圖①,;

A、B兩點都在原點右側(cè)時,如圖②,;

AB兩點都在原點左側(cè)時,如圖③,;

AB兩點在原點兩側(cè)時,如圖④,

請根據(jù)上述結(jié)論,回答下列問題:

(1)數(shù)軸上表示25的兩點問距離是______,數(shù)軸上表示2-6的兩點間距高是_________,數(shù)軸上表示-13的兩點間距離是____________.

(2)數(shù)軸上表示x-1的兩點AB之間的距離可表示為_________,若|AB|=2,則x的值為_____________.

(3)取最小值時,請寫出所有符合條件的x的整數(shù)值_______________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了迎接期中考試,小強對考試前剩余時間作了一個安排,他把計劃復(fù)習重要內(nèi)容的時間用一個四邊形圈起來.如圖,他發(fā)現(xiàn),用這樣的四邊形圈起來五個數(shù)的和恰好是5的倍數(shù),他又試了幾個位置,都符合這樣的特征。

1)若設(shè)這五個數(shù)中間的數(shù)為a請你用整式的加減說明其中的道理.

2)這五個數(shù)的和能為150嗎?若能,請寫出中間那個數(shù),若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=﹣x+x軸、y軸分別交于點A、B,在坐標軸上找點P,使△ABP為等腰三角形,則點P的個數(shù)為( )

A. 2B. 4C. 6D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:梯形中,,聯(lián)結(jié)(如圖1. 沿梯形的邊從點移動,設(shè)點移動的距離為,.

1)求證:

2)當點從點移動到點時,的函數(shù)關(guān)系(如圖2)中的折線所示. 試求的長;

3)在(2)的情況下,點從點移動的過程中,是否可能為等腰三角形?若能,請求出所有能使為等腰三角形的的取值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市為了增強學(xué)生體質(zhì),全面實施“學(xué)生飲用奶”營養(yǎng)工程.某品牌牛奶供應(yīng)商提供了原味、草莓味、菠蘿味、香橙味、核桃味五種口味的牛奶提供學(xué)生飲用.浠馬中學(xué)為了了解學(xué)生對不同口味牛奶的喜好,對全校訂購牛奶的學(xué)生進行了隨機調(diào)查(每盒各種口味牛奶的體積相同),繪制了如圖兩張不完整的人數(shù)統(tǒng)計圖:

(1)本次被調(diào)查的學(xué)生有   名;

(2)補全上面的條形統(tǒng)計圖1,并計算出喜好“菠蘿味”牛奶的學(xué)生人數(shù)在扇形統(tǒng)計圖中所占圓心角的度數(shù);

(3)該校共有1200名學(xué)生訂購了該品牌的牛奶,牛奶供應(yīng)商每天只為每名訂購牛奶的學(xué)生配送一盒牛奶.要使學(xué)生每天都喝到自己喜好的口味的牛奶,牛奶供應(yīng)商每天送往該校的牛奶中,草莓味要比原味多送多少盒?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線y=-3x3與坐標軸分別交于A,B兩點,以線段AB為邊,在第一象限內(nèi)作正方形ABCD,直線y3x2y軸交于點F,與線段AB交于點E,將正方形ABCD沿x軸負半軸方向平移a個單位長度,使點D落在直線EF.有下列結(jié)論:①△ABO的面積為3;②點C的坐標是(4,1);③點Ex軸距離是;

a1.其中正確結(jié)論的個數(shù)是(

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下圖的數(shù)陣由88個偶數(shù)排成.現(xiàn)用一個如圖所示的平行四邊形框可以框出四個數(shù);

①圖中平行四邊形框內(nèi)的四個數(shù)有什么關(guān)系?

②在數(shù)陣中任意作一類似(1)中的平行四邊形框,設(shè)其中左上角的一個數(shù)是,那么其他三個數(shù)怎樣表示?

③在這個數(shù)陣的平行四邊形框內(nèi),是否存在和為288的四個數(shù)?若存在,求出這四個數(shù);不存在,說明理由.

查看答案和解析>>

同步練習冊答案