【題目】⊙O中,AB為直徑,點C為圓上一點,將劣弧沿弦AC翻折交AB于點D,連結(jié)CD.
(1)如圖1,若點D與圓心O重合,AC=2,求⊙O的半徑r;
(2)如圖2,若點D與圓心O不重合,∠BAC=25°,求∠DCA的度數(shù).
【答案】(1);(2)40°.
【解析】試題分析:(1)過點O作OE⊥AC于E,根據(jù)垂徑定理可得AE=AC,再根據(jù)翻折的性質(zhì)可得OE= ,然后在Rt△AOE中,利用勾股定理列式計算即可得解;
(2)連接BC,根據(jù)直徑所對的圓周角是直角求出∠ACB,根據(jù)直角三角形兩銳角互余求出∠B,再根據(jù)翻折的性質(zhì)得到所對的圓周角,然后根據(jù)∠ACD等于所對的圓周角減去所對的圓周角,計算即可得解.
試題解析:(1)如圖,過點O作OE⊥AC于E,
則AE=AC=,
∵翻折后點D與圓心O重合,∴OE= ,
在Rt△AOE中, ,即,解得;
(2)連接BC,
∵AB是直徑,∴∠ACB=90°,
∵∠BAC=25°,∴∠B=90°﹣∠BAC=90°﹣25°=65°,
根據(jù)翻折的性質(zhì),所對的圓周角為∠B,所對的圓周角為∠ADC,
∴∠ADC+∠B=180°,∴∠B=∠CDB=65°,∴∠DCA=∠CDB﹣∠A=65°﹣25°=40°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知CD是∠ACB的平分線,∠ACB=48°,∠BDC=82°,DE∥BC.求:
(1)∠EDC的度數(shù);
(2)∠B的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】求出符合條件的二次函數(shù)解析式:
(1)二次函數(shù)圖象經(jīng)過點(﹣1,0),(1,2),(0,3);
(2)二次函數(shù)圖象的頂點坐標(biāo)為(﹣3,6),且經(jīng)過點(﹣2,10);
(3)二次函數(shù)圖象與x軸的交點坐標(biāo)為(﹣1,0),(3,0),與y軸交點的縱坐標(biāo)為9.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AD∥CB,∠A=∠C,若∠ABD=32°,求∠BDC的度數(shù).有同學(xué)用了下面的方法.但由于一時犯急沒有寫完整,請你幫他添寫完整.
解:∵AD∥CB(已知)
∴∠C+∠ADC=180°(_________________),
又∵∠A=∠C (___________________),
∴∠A+∠ADC=180° (___________________),
∴AB∥CD (___________________________),
∴∠BDC=∠ABD=32° (___________________).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知開始輸入的x的值為正整數(shù).若最后輸出的結(jié)果為144,則滿足條件的x的值為________;若經(jīng)過一次運算就能輸出結(jié)果,則x的最小值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)習(xí)小組做“用頻率估計概率”的實驗時,統(tǒng)計了某一結(jié)果出現(xiàn)的頻率,繪制了如下的表格,則符合這一結(jié)果的實驗最有可能的是( )
實驗次數(shù) | 100 | 200 | 300 | 500 | 800 | 1000 | 2000 |
頻率 | 0.365 | 0.328 | 0.330 | 0.334 | 0.336 | 0.332 | 0.333 |
A.一副去掉大小王的普通撲克牌洗勻后,從中任抽一張牌的花色是紅桃
B.在“石頭、剪刀、布”的游戲中,小明隨機出的是“剪刀”
C.拋一個質(zhì)地均勻的正六面體骰子,向上的面點數(shù)是5
D.拋一枚硬幣,出現(xiàn)反面的概率
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某攔水大壩的橫斷面為梯形ABCD,AE、DF為梯形的高,其中迎水坡AB的坡角α=45°,坡長AB=米,背水坡CD的坡度i=1: (i為DF與FC的比值),則背水坡CD的坡長為_______米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解下列方程:
(1)9(y+4)2﹣49=0
(2)2x2+3=7x(配方法);
(3)2x2﹣7x+5=0 (公式法)
(4)x2=6x+16
(5)2x2﹣7x﹣18=0
(6)(2x﹣1)(x+3)=4.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com