【題目】求出符合條件的二次函數(shù)解析式:

(1)二次函數(shù)圖象經(jīng)過點(diǎn)(﹣1,0),(1,2),(0,3);

(2)二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為(﹣3,6),且經(jīng)過點(diǎn)(﹣2,10);

(3)二次函數(shù)圖象與x軸的交點(diǎn)坐標(biāo)為(﹣1,0),(3,0),與y軸交點(diǎn)的縱坐標(biāo)為9.

【答案】(1)y=﹣2x2+x+3(2)y=4(x+3)2+6(3)y=﹣3x2+6x+9

【解析】試題分析:1設(shè)一般式y=ax2+bx+c,再把三個(gè)點(diǎn)的坐標(biāo)代入得到關(guān)于a、b、c的方程組,然后解方程組求出a、bc的值即可;
2)由于已知頂點(diǎn)坐標(biāo),則可設(shè)頂點(diǎn)式y=ax+32+6,然后把(-210)代入求出a即可;
3)由于已知拋物線與x軸的兩交點(diǎn)坐標(biāo),則可設(shè)交點(diǎn)式y=ax+1)(x-3),然后把(0,9)代入求出a即可.

解:1)設(shè)二次函數(shù)解析式為y=ax2+bx+c

根據(jù)題意得,解得

所以二次函數(shù)解析式為y=﹣2x2+x+3;

2)二次函數(shù)解析式為y=ax+32+6

把(﹣2,10)代入得﹣2+32+6=10,解得a=4

所以二次函數(shù)解析式為y=4x+32+6;

3)設(shè)二次函數(shù)解析式為y=ax+1)(x﹣3),

把(0,9)代入得a×1×﹣3=9,解得a=﹣3

所以二次函數(shù)解析式為y=﹣3x+1)(x﹣3=﹣3x2+6x+9

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=ACD是邊BC上的一點(diǎn),DEAB,DFAC,垂足分別是E、F,EFBC

1)求證:BDE≌△CDF

2)若BC=2AD,求證:四邊形AEDF是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,正方形ABCD的頂點(diǎn)坐標(biāo)分別為 A(1,1),B(1,-1),C(-1,-1),D(-1,1),y軸上有一點(diǎn) P(0,2).作點(diǎn)P關(guān)于點(diǎn)A的對(duì)稱點(diǎn)P1,作點(diǎn)P1關(guān)于點(diǎn)B的對(duì)稱點(diǎn)P2,作點(diǎn)P2關(guān)于點(diǎn)C的對(duì)稱軸P3,作點(diǎn)P3關(guān)于點(diǎn)D的對(duì)稱點(diǎn)P4,作點(diǎn)P4關(guān)于點(diǎn)A的對(duì)稱點(diǎn)P5,作點(diǎn)P5關(guān)于點(diǎn)B的對(duì)稱點(diǎn)P6,…,按此操作下去,則點(diǎn)P2016的坐標(biāo)為(

A. (0,2) B. (2,0) C. (0,-2) D. (-2,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙OABC的內(nèi)切圓,過點(diǎn)ODEBC,與AB、AC分別交于點(diǎn)D、E.

1)求證:BD+CEDE;

2)若∠BAC=70,求∠BOC的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角三角形ABC中,∠C=90°,點(diǎn)OAB上的一點(diǎn),以點(diǎn)O為圓心,OA為半徑的圓弧與BC相切于點(diǎn)D,交AC于點(diǎn)E,連接AD

1)求證:AD平分∠BAC;

2)已知AE=2,DC=,求圓弧的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線m0與x軸交于A、B兩點(diǎn).

(1)求證:拋物線的對(duì)稱軸在y軸的左側(cè);

(2)若(O為坐標(biāo)原點(diǎn)),求拋物線的解析式;

(3)設(shè)拋物線與y軸交于點(diǎn)C,若ABC是直角三角形.求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】O中,AB為直徑,點(diǎn)C為圓上一點(diǎn),將劣弧沿弦AC翻折交AB于點(diǎn)D,連結(jié)CD

1)如圖1,若點(diǎn)D與圓心O重合,AC=2,求⊙O的半徑r

2)如圖2,若點(diǎn)D與圓心O不重合,∠BAC=25°,求∠DCA的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公交公司有A,B型兩種客車,它們的載客量和租金如下表:

A

B

載客量(/)

45

30

租金(/)

400

280

紅星中學(xué)根據(jù)實(shí)際情況,計(jì)劃租用A,B型客車共5輛,同時(shí)送七年級(jí)師生到基地參加社會(huì)實(shí)踐活動(dòng),設(shè)租用A型客車x輛,根據(jù)要求回答下列問題:

(1)用含x的式子填寫下表:

車輛數(shù)()

載客量()

租金()

A

x

45x

400x

B

5-x

(2)若要保證租車費(fèi)用不超過1900元,求x的最大值;

(3)(2)的條件下,若七年級(jí)師生共有195人,寫出所有可能的租車方案,并確定最省錢的租車方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一個(gè)直角三角形紙片,兩直角邊AC=6cm,BC=8cm,現(xiàn)將直角邊AC沿∠CAB的角平分線AD折疊,使它落在斜邊AB上,且與AE重合,你能求出CD的長嗎?

查看答案和解析>>

同步練習(xí)冊(cè)答案