【題目】某種蔬菜每千克售價(jià)(元)與銷(xiāo)售月份之間的關(guān)系如圖1所示,每千克成本(元)與銷(xiāo)售月份之間的關(guān)系如圖2所示,其中圖1中的點(diǎn)在同一條線段上,圖2中的點(diǎn)在同一條拋物線上,且拋物線的最低點(diǎn)的坐標(biāo)為(6,1).

1)求出之間滿(mǎn)足的函數(shù)表達(dá)式,并直接寫(xiě)出的取值范圍;

2)求出之間滿(mǎn)足的函數(shù)表達(dá)式;

3)設(shè)這種蔬菜每千克收益為元,試問(wèn)在哪個(gè)月份出售這種蔬菜,將取得最大值?并求出此最大值.(收益=售價(jià)-成本)

【答案】(1)y1=﹣x+7(3≤x≤6);(2)y2=(x﹣6)2+1;(3)5月出售這種蔬菜,每千克收益最大

【解析】

(1)設(shè)y1=kx+b,y2=a(x-b)2+c,代入各點(diǎn)求出未知量,(2)收益=售價(jià)-成本,列出函數(shù)解析式,求出最大值.

(1)設(shè)y1=kx+b,

∵直線經(jīng)過(guò)(3,5)、(6,3),

,解得:,

y1=﹣x+7(3≤x≤6),

(2)設(shè)y2=a(x﹣6)2+1,

把(3,4)代入得:4=a(3﹣6)2+1,

解得a=,

y2=(x﹣6)2+1,

(3)由題意得:w=y1﹣y2=﹣x+7﹣[(x﹣6)2+1],

=﹣x2+=﹣

當(dāng)x=5時(shí),y最大值=

5月出售這種蔬菜,每千克收益最大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】河上有一座橋孔為拋物線形的拱橋(如圖 ),水面寬 時(shí),水面離橋孔頂部 ,因降暴雨水面上升

(1)建立適當(dāng)?shù)淖鴺?biāo)系,并求暴雨后水面的寬;(結(jié)果保留根號(hào))

(2)一艘裝滿(mǎn)物資的小船,露出水面的部分高為 ,寬 (橫斷面如圖 所示),暴雨后這艘船能從這座拱橋下通過(guò)嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,為探測(cè)某座山的高度AB,某飛機(jī)在空中C處測(cè)得山頂A處的俯角為31°,此時(shí)飛機(jī)的飛行高度為CH=4千米;保持飛行高度與方向不變,繼續(xù)向前飛行2千米到達(dá)D處,測(cè)得山頂A處的俯角為50°.求此山的高度AB.(參考數(shù)據(jù):tan31°≈0.6,tan50°≈1.2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著信息技術(shù)的快速發(fā)展,互聯(lián)網(wǎng)+”滲透到我們?nèi)粘I畹母鱾(gè)領(lǐng)域,網(wǎng)上在線學(xué)習(xí)交流已不再是夢(mèng),現(xiàn)有某教學(xué)網(wǎng)站策劃了兩種上網(wǎng)學(xué)習(xí)的月收費(fèi)方式.

收費(fèi)方式

月使用費(fèi)/

包時(shí)上網(wǎng)時(shí)間/

超時(shí)費(fèi)/(元/

12

40

0.5

0.6

設(shè)每月上網(wǎng)學(xué)習(xí)時(shí)間為小時(shí),方案的收費(fèi)金額分別為,

1)如圖是之間的函數(shù)關(guān)系圖象,請(qǐng)根據(jù)圖象填空:

2)求出)之間的函數(shù)關(guān)系式.

3)如果每月上網(wǎng)時(shí)間為60小時(shí),選擇哪種方式網(wǎng)上學(xué)習(xí)合算,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】請(qǐng)閱讀下列材料:

提出問(wèn)題:現(xiàn)有2個(gè)邊長(zhǎng)是1的小正方形,請(qǐng)你把它們分割后,(圖形不得重疊,不得遺漏),組成一個(gè)大的正方形,解決這個(gè)問(wèn)題的方法不唯一,但有一個(gè)解題的思路是:設(shè)新正方形的邊長(zhǎng)為.依題意,割補(bǔ)前后圖形的面積相等,有,解得,由此可知新正方形的邊長(zhǎng)等于原來(lái)正方形的對(duì)角線的長(zhǎng).

1)解決問(wèn)題:現(xiàn)有5個(gè)邊長(zhǎng)為1的正方形,排列形式如圖3,請(qǐng)把它們分割后拼接成一個(gè)新的正方形,要求:畫(huà)出分割線并在正方形網(wǎng)格圖(圖中每個(gè)小正方形的邊長(zhǎng)均為1)中用實(shí)線畫(huà)出拼接成的新正方形.

小東同學(xué)的做法是:設(shè)新正方形的邊長(zhǎng)為).依題意,割補(bǔ)前后圖形的面積相等,有 ,解得 .由此可知新正方形的邊長(zhǎng)等于兩個(gè)正方形組成的矩形對(duì)角線的長(zhǎng).請(qǐng)你在圖3中畫(huà)出分割線,在圖4中拼出新的正方形.

2)模仿演練:

現(xiàn)有10個(gè)邊長(zhǎng)為1的正方形,排列形式如圖5,請(qǐng)把它們分割后拼接成一個(gè)新的正方形.要求:在圖5中畫(huà)出分割線,并在圖6中的正方形網(wǎng)格圖(圖中每個(gè)小正方形的邊長(zhǎng)均為1)中用實(shí)線畫(huà)出拼接成的新正方形.說(shuō)明:直接畫(huà)出圖形,不要求寫(xiě)分析過(guò)程.

3)應(yīng)用創(chuàng)新:

7是一個(gè)大的矩形紙片剪去一個(gè)小矩形后的示意圖,請(qǐng)你將它剪成三塊后再拼成正方形(在圖7中畫(huà)出分割線,在圖8中要求畫(huà)出三塊圖形組裝成大正方形的示意圖).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在ABC中,BE平分∠ABC,DEBC.

(1)試猜想BDE的形狀,并說(shuō)明理由;

(2)若∠A35°,∠C70°,求∠BDE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線⊙O相切于點(diǎn)D,過(guò)圓心OEF∥⊙OEF兩點(diǎn),點(diǎn)A⊙O上一點(diǎn),連接AE,AF,并分別延長(zhǎng)交直線B、C兩點(diǎn);

1)求證:∠ABC+∠ACB=90°;

2)若⊙O的半徑,BD=12,求tan∠ACB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們已經(jīng)學(xué)習(xí)過(guò):同弧或等弧所對(duì)的圓周角都相等,都等于該弧所對(duì)的圓心角的一半.請(qǐng)您就下面所給的圖和圖中,圓心的位置關(guān)系,證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A、D、C、F在同一條直線上,AD=CF,AB=DE,BC=EF.

(1)求證:ΔABC△DEF;

(2)若∠A=55°,B=88°,求∠F的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案