已知:A(a,y1)、B(2a,y2)是反比例函數(shù)圖像上的兩點(diǎn).

(1)比較y1與y2的大小關(guān)系;
(2)若A、B兩點(diǎn)在一次函數(shù)  第一象限的圖像上(如圖所示),分別過A、B兩點(diǎn)作x軸的垂線,垂足分別為C、D,連結(jié)OA、OB,且SOAB=8,求a的值;
(3)在(2)的條件下,如果,求使得m>n的x的取值范圍.
(1)y1<y2,(2)2 (3)x<0或2<x<4

試題分析:(1)∵A、B是反比例函數(shù)圖像上的兩點(diǎn),∴a≠0
當(dāng)a>0時(shí),A、B在第一象限,由a<2a可知:y1<y2;
同理,當(dāng)a<0時(shí),y1<y2   4′(只寫一種情況得2分)

(2)由條件可知:a>0,b>0,過點(diǎn)B作BE⊥AC,垂足為E,
直線AB分別交x軸、y軸于點(diǎn)F、G。
∵A(a,y1)、B(2a,y2)在反比例函數(shù)的圖像上,
!郃E=BD,從而有△ABE≌△BFD
∴OC=CD=DF=a,從而得GA=AB=BF,
由SOAB=8,得SGOF=24,由OF·OG="24"
,∴  b=8   a=2
(3)由(2)得一次函數(shù)的解析式為:,反比例函數(shù)的解析式為:,A、B兩點(diǎn)的橫坐標(biāo)分別為2、4,且、,因此,使得m>n的x的取值范圍就是求反比例函數(shù)的圖像在一次函數(shù)圖像下方的點(diǎn)中橫坐標(biāo)的取值范圍,從圖像可以看出:x<0或2<x<4 
點(diǎn)評:本題考查一次函數(shù),反比例函數(shù),解答本題需要考生掌握一次函數(shù),反比例函數(shù)的圖象和性質(zhì),會(huì)利用一次函數(shù),反比例函數(shù)的圖象來比較函數(shù)值的大小
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖是我們學(xué)過的反比例函數(shù)圖象,它的函數(shù)解析式可能是(   )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖是雙曲線、在第一象限的圖像,,過上的任意一點(diǎn),作軸的平行線交,交軸于,若;求雙曲線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

請寫一個(gè)圖象在第二、四象限的反比例函數(shù)解析式:     

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如果反比例函數(shù)y=的圖象經(jīng)過點(diǎn)(-2、5),則該函數(shù)的圖象在平面直角坐標(biāo)系中位于第    象限。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

反比例函數(shù)在第一象限的圖象如圖所示,則的值可能是(   )
A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:成正比例,且時(shí),。
(1)試求之間的函數(shù)關(guān)系式;
(2)當(dāng)時(shí),求的值;
(3)當(dāng)取何值時(shí), ?;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知水池的容量一定,當(dāng)每小時(shí)的灌水量為q=3米3時(shí),灌滿水池所需的時(shí)間為t=12小時(shí).
(1)寫出灌水量q與灌滿水池所需的時(shí)間t的函數(shù)關(guān)系式;
(2)求當(dāng)灌滿水池所需8小時(shí)時(shí),每小時(shí)的灌水量.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

某反比例函數(shù)的圖象經(jīng)過點(diǎn)(-1,6),則此函數(shù)圖象也經(jīng)過點(diǎn)  (    )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案