【題目】已知點A1,0)、點B50),點P是該直角坐標系內(nèi)的一個動點.若點Py軸的負半軸上,且∠APB30°,則滿足條件的點P的坐標為_____

【答案】(0,﹣2)(0,﹣2+)

【解析】

利用圓周角定理可判斷點A、BP在以C點為圓心,CA為半徑的圓上,且∠ACB2∠APB60°,則CACBAB4,⊙Cy軸于PP′點,連接CP,如圖,作CD⊥ABDCE⊥y軸于E,根據(jù)垂徑定理得到得到ADDB2PEP′E,所以CD2OA3,再利用勾股定理計算出PE得到OP′OP的長,從而得到滿足條件的點P的坐標.

解:∵∠APB30°,

A、BP在以C點為圓心,CA為半徑的圓上,且∠ACB2∠APB60°,

∴△ABC為等邊三角形,

∴CACBAB4

⊙Cy軸于PP′點,連接CP,如圖,

CD⊥ABD,CE⊥y軸于E,則ADDB2PEP′E,

∵∠BOP=90°,

∴四邊形OECD是矩形,

OE=CDOD=CE.

∵AD2,CA4

∴CD2,ODOA+AD3,

Rt△PCE中,PE=,

∵OECD2,

∴OP′2,OP2+,

∴P0,﹣2),P′0,﹣2+),

滿足條件的點P的坐標為(0,﹣2)或(0,﹣2+).

故答案為(0,﹣2)或(0,﹣2+).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在反比例函數(shù)yx0)的圖象上,有點P1、P2P3、P4,它們的橫坐標依次為1,2,34.分別過這些點作x軸與y軸的垂線,圖中所構成的陰影部分的面積從左到右依次為S1S2、S3,則S1+S2+S3=( 。

A.2B.2.5C.3D.無法確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在由邊長為1個單位長度的小正方形組成的網(wǎng)格圖中,△ABC的頂點都在網(wǎng)格線交點上.

1)圖中AC邊上的高為   個單位長度;

2)只用沒有刻度的直尺,在所給網(wǎng)格圖中按如下要求畫圖(保留必要痕跡):

以點C為位似中心,把ABC按相似比1:2縮小,得到DEC

AB為一邊,作矩形ABMN,使得它的面積恰好為ABC的面積的2倍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知如圖ABC中,以AB為直徑的⊙OACBC的交點分別為D,E

1)∠A68°,求∠CED的大小.

2)當DEBE時,證明:ABC為等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1是超市的手推車,如圖2是其側面示意圖,已知前后車輪半徑均為5 cm,兩個車輪的圓心的連線AB與地面平行,測得支架ACBC60cm,AC、CD所在直線與地面的夾角分別為30°、60°,CD50cm

1)求扶手前端D到地面的距離;

2)手推車內(nèi)裝有簡易寶寶椅,EF為小坐板,打開后,椅子的支點H到點C的距離為10 cm,DF20cm,EFAB,∠EHD45°,求坐板EF的寬度.(本題答案均保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在足夠大的空地上有一段長為30米的舊墻MN,某人利用舊墻和木欄圍成一個矩形菜園ABCD,其中AD≤MN,已知矩形菜園的一邊靠墻,另三邊一共用了80米木欄,設這個菜園垂直于墻的一邊長為x米.

1)若平行于墻的一邊長為y米,寫出yx的函數(shù)表達式子,并求出自變量x的取值范圍;

2)垂直于墻的一邊長為多少米時,這個矩形菜園ABCD的面積最大,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】使用家用燃氣灶燒開同一壺水所需的燃氣量(單位:)與旋鈕的旋轉角度(單位:度)()近似滿足函數(shù)關系y=ax2+bx+c(a≠0).如圖記錄了某種家用燃氣灶燒開同一壺水的旋鈕角度與燃氣量的三組數(shù)據(jù),根據(jù)上述函數(shù)模型和數(shù)據(jù),可推斷出此燃氣灶燒開一壺水最節(jié)省燃氣的旋鈕角度約為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=4,BC=2,O為對角線AC的中點,點P、Q分別從A和B兩點同時出發(fā),在邊AB和BC上勻速運動,并且同時到達終點B、C,連接PO、QO并延長分別與CD、DA交于點M、N.在整個運動過程中,圖中陰影部分面積的大小變化情況是( )

A. 一直增大 B. 一直減小 C. 先減小后增大 D. 先增大后減小

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學校實施新課程改革以來,學生的學習能力有了很大提高.王老師為進一步了解本班學生自主學習、合作交流的現(xiàn)狀,對該班部分學生進行調(diào)查,把調(diào)查結果分成四類(A:特別好,B:好,C:一般,D:較差)后,再將調(diào)查結果繪制成兩幅不完整的統(tǒng)計圖(如圖1,2).請根據(jù)統(tǒng)計圖解答下列問題:

1)本次調(diào)查中,王老師一共調(diào)查了   名學生;

2)將條形統(tǒng)計圖補充完整;

3)為了共同進步,王老師從被調(diào)查的A類和D類學生中分別選取一名學生進行“兵教兵”互助學習,請用列表或畫樹狀圖的方法求出恰好選中一名男生和一名女生的概率.

查看答案和解析>>

同步練習冊答案