【題目】如圖,拋物線y=x2﹣2x﹣3與x軸交A、B兩點(A點在B點左側(cè)),直線l與拋物線交于A、C兩點,其中C點的橫坐標為2.
(1)求A、B兩點的坐標及直線AC的函數(shù)表達式;
(2)P是線段AC上的一個動點,(不與A、C重合),過P點作y軸的平行線交拋物線于E點,求線段PE長度的最大值,并直接寫出△ACE面積的最大值;
(3)點G為拋物線上的動點,在x軸上是否存在點F,使A、C、F、G這樣的四個點為頂點的四邊形是平行四邊形?如果存在,直接寫出所有滿足條件的F點坐標;如果不存在,請說明理由.
【答案】
(1)
解:當y=0時,解得x1=﹣1或x2=3,
∴A(﹣1,0)B(3,0).
將C點的橫坐標x=2代入y=x2﹣2x﹣3得y=﹣3,
∴C(2,﹣3).
設(shè)直線AC的解析式為y=kx+b,將點A和點C的坐標代入得: ,
解得:k=﹣1,b=﹣1.
∴直線AC的函數(shù)解析式是y=﹣x﹣1
(2)
解:設(shè)P點的橫坐標為x(﹣1≤x≤2)則P、E的坐標分別為:P(x,﹣x﹣1),E(x,x2﹣2x﹣3)
∵P點在E點的上方,
∴PE=(﹣x﹣1)﹣(x2﹣2x﹣3)=﹣x2+x+2=﹣(x﹣ )2+ .
∴當x= 時,PE的最大值為 .
∴S△ACE= ×PE×(xC﹣xA)= × ×3=
(3)
解:當AC為平行四邊形的對角線時.設(shè)點F的坐標為(a,0),點G的坐標為(x,y).
∵平行四邊形的對角線互相平分,
∴依據(jù)中點坐標公式可知: , .
∴y=﹣3,x=1﹣a.
∵點G在拋物線上,
∴﹣3=(1﹣a)2﹣2(1﹣a)﹣3,整理得:a2﹣1=0,解得a=﹣1或a=﹣1(舍去).
∴點F的坐標為(1,0).
當AC為平行四邊形的邊,CF為對角線時.設(shè)點F的坐標為(a,0),點G的坐標為(x,y).
∵平行四邊形的對角線互相平分,
∴依據(jù)中點坐標公式可知: , = .
∴y=﹣3,x=a+3
∵點G在拋物線上,
∴﹣3=(a+3)2﹣2(a+3)﹣3,整理得:a2+4a+3=0,將a=﹣3或a=﹣1(舍去)
∴點F的坐標為(﹣3,0).
當AC為平行四邊形的邊,CG為對角線時.設(shè)點F的坐標為(a,0),點G的坐標為(x,y).
∵平行四邊形的對角線互相平分,
∴依據(jù)中點坐標公式可知: , = .
∴y=3,x=a﹣3
∵點G在拋物線上,
∴3=(a﹣3)2﹣2(a﹣3)﹣3,整理得:a2﹣8a+9=0,解得a=4+ 或a=4 .
∴點F的坐標為(4+ ,0)或(4﹣ ).
綜上所述,點F的坐標為(1,0)或(﹣3,0)或(4+ ,0)或(4﹣ )
【解析】(1)令y=0得到關(guān)于x的方程,解方程可求得點A和點B的橫坐標,將x=2代入拋物線的解析式求得對應(yīng)的y值可求得點C的縱坐標,設(shè)直線AC的解析式為y=kx+b,將點A和點C的坐標代入求得k和b的值即可;(2)設(shè)P點的橫坐標為x(﹣1≤x≤2)則P、E的坐標分別為:P(x,﹣x﹣1),E(x,x2﹣2x﹣3),然后得到PE與x的函數(shù)關(guān)系式,利用二次函數(shù)的性質(zhì)可求得PE的最大值,最后依據(jù)S△ACE= ×PE×(xC﹣xA)求解即可;(3)設(shè)點F的坐標為(a,0),點G的坐標為(x,y),依據(jù)中點坐標公式求得點G的坐標,然后將點G的坐標代入拋物線的解析式求得對應(yīng)的a的值即可.
【考點精析】解答此題的關(guān)鍵在于理解二次函數(shù)的圖象的相關(guān)知識,掌握二次函數(shù)圖像關(guān)鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點,以及對二次函數(shù)的性質(zhì)的理解,了解增減性:當a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減。
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABHK是邊長為6的正方形,點C、D在邊AB上,且AC=DB=1,點P是線段CD上的動點,分別以AP、PB為邊在線段AB的同側(cè)作正方形AMNP和正方形BRQP,E、F分別為MN、QR的中點,連接EF,設(shè)EF的中點為G,則當點P從點C運動到點D時,點G移動的路徑長為( )
A.1
B.2
C.3
D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將邊長為3的正六邊形鐵絲框ABCDEF變形為以點A為圓心,AB為半徑的扇形(忽略鐵絲的粗細).則所得扇形AFB(陰影部分)的面積為( )
A.6π
B.18
C.18π
D.20
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過邊長為1的等邊△ABC的邊AB上一點P,作PE⊥AC于E,Q為BC延長線上一點,當PA=CQ時,連PQ交AC邊于D,則DE的長為( )
A. B. C. D. 不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點B、E分別在直線AC和DF上,若∠AGB=∠EHF,∠C=∠D,可以證明∠A=∠F.請完成下面證明過程中的各項“填空”.
證明:∵∠AGB=∠EHF(理由: )
∠AGB= (對頂角相等)
∴∠EHF=∠DGF,∴DB∥EC(理由: )
∴ =∠DBA(兩直線平行,同位角相等)
又∵∠C=∠D,∴∠DBA=∠D,
∴DF∥ (內(nèi)錯角相等,兩直線平行)
∴∠A=∠F(理由: ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,∠A+∠D=180°,∠1=3∠2,∠2=24°,點P是BC上的一點.
(1)請寫出圖中∠1的一對同位角,一對內(nèi)錯角,一對同旁內(nèi)角;
(2)求∠EFC與∠E的度數(shù);
(3)若∠BFP=46°,請判斷CE與PF是否平行?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,DE∥AB.請根據(jù)已知條件進行推理,分別得出結(jié)論,并在括號內(nèi)注明理由.
(1)∵DE∥AB,( 已知 )
∴∠2= . ( , )
(2)∵DE∥AB,(已知 )
∴∠3= .( , )
(3)∵DE∥AB(已知 ),
∴∠1+ =180°.( , )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,完成下列推理過程,已知AB∥CD,AC∥BD,
(1)∵AB∥CD(已知) ∴∠A=∠5(兩直線平行,_______________);
(2)∵AC∥BD(已知) ∴∠3=∠4(兩直線平行,_______________);
(3)∵AB∥CD(已知) ∴∠__=∠___(兩直線平行,內(nèi)錯角相等);
(4)∵AB∥CD(已知) ∴∠D +∠______ =180°(兩直線平行,____)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,半徑為2的正六邊形ABCDEF的中心在坐標原點O,點P從點B出發(fā),沿正六邊形的邊按順時針方向以每秒2個單位長度的速度運動,則第2017秒時,點P的坐標是( )
A.(1, )
B.(﹣1,﹣ )
C.(1,﹣ )
D.(﹣1, )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com