【題目】如圖,半徑為2的正六邊形ABCDEF的中心在坐標(biāo)原點(diǎn)O,點(diǎn)P從點(diǎn)B出發(fā),沿正六邊形的邊按順時針方向以每秒2個單位長度的速度運(yùn)動,則第2017秒時,點(diǎn)P的坐標(biāo)是(
A.(1,
B.(﹣1,﹣
C.(1,﹣
D.(﹣1,

【答案】C
【解析】解:∵2017=6×336+1, ∴第2017秒時,點(diǎn)P運(yùn)動到點(diǎn)C,
作CH⊥x軸于H,如圖,
∵六邊形ABCDEF是半徑為1的正六邊形,
∴OB=BC=2,∠BCD=120°,
∴∠BCH=30°,
在Rt△BCH中,BH= BC=1,CH= BH=
∴OH=OB﹣BH=1,
∴C點(diǎn)坐標(biāo)為(1,﹣ ),
∴第2017秒時,點(diǎn)P的坐標(biāo)是(1,﹣ ).
故選C.

【考點(diǎn)精析】利用數(shù)與式的規(guī)律對題目進(jìn)行判斷即可得到答案,需要熟知先從圖形上尋找規(guī)律,然后驗(yàn)證規(guī)律,應(yīng)用規(guī)律,即數(shù)形結(jié)合尋找規(guī)律.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2﹣2x﹣3與x軸交A、B兩點(diǎn)(A點(diǎn)在B點(diǎn)左側(cè)),直線l與拋物線交于A、C兩點(diǎn),其中C點(diǎn)的橫坐標(biāo)為2.

(1)求A、B兩點(diǎn)的坐標(biāo)及直線AC的函數(shù)表達(dá)式;
(2)P是線段AC上的一個動點(diǎn),(不與A、C重合),過P點(diǎn)作y軸的平行線交拋物線于E點(diǎn),求線段PE長度的最大值,并直接寫出△ACE面積的最大值;
(3)點(diǎn)G為拋物線上的動點(diǎn),在x軸上是否存在點(diǎn)F,使A、C、F、G這樣的四個點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?如果存在,直接寫出所有滿足條件的F點(diǎn)坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ABC與∠ACB的平分線相交于O.過點(diǎn)OEFBC分別交AB、ACEF.若∠BOC=130°,∠ABC:∠ACB=32,求∠AEF和∠EFC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC為等腰三角形,AC=BC,△BDC△ACE分別為等邊三角形,直線AEBD相交于點(diǎn)F,連接CF,交AB于點(diǎn)G.

(1)若∠ACB=150°,求∠AFB的度數(shù)

(2)求證:AG=BG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)圖形填空:

(1)若直線ED,BC被直線AB所截,則∠1__________是同位角.

(2)若直線ED,BC被直線AF所截,則∠3__________是內(nèi)錯角.

(3)1和∠3是直線AB,AF被直線__________所截構(gòu)成的__________.

(4)2和∠4是直線__________,__________被直線BC所截構(gòu)成的__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD,且ABCDE、FAD上兩點(diǎn),CEAD,BFAD.若CEaBFb,EFc,則AD的長為(

A. a+cB. b+cC. ab+cD. a+bc

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示ABDE,ACDF,AC=DF下列條件中不能判斷ABC≌△DEF的是( 。

A. AB=DE B. B=∠E C. EF=BC D. EFBC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在ABCD中,∠ACB=25°,現(xiàn)將ABCD沿EF折疊,使點(diǎn)C與點(diǎn)A重合,點(diǎn)D落在G處,則∠GFE的度數(shù)(
A.135°
B.120°
C.115°
D.100°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分別寫有數(shù)0,21 , ﹣2,cos30°,3的五張卡片,除數(shù)字不同外其他均相同,從中任意抽取一張,那么抽到非負(fù)數(shù)的概率是(
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案