【題目】已知:如圖,在菱形中,為邊的中點(diǎn),與對角線交于點(diǎn),過于點(diǎn)

,求的長;

求證:

【答案】(1)2;(2)見解析

【解析】

(1)根據(jù)菱形的對邊平行可得AB∥CD,再根據(jù)兩直線平行,內(nèi)錯角相等可得∠1=∠ACD,所以∠ACD=∠2,根據(jù)等角對等邊的性質(zhì)可得CM=DM,再根據(jù)等腰三角形三線合一的性質(zhì)可得CE=DE,然后求出CD的長度,即為菱形的邊長BC的長度;

(2)先利用“邊角邊”證明△CEM和△CFM全等,根據(jù)全等三角形對應(yīng)邊相等可得ME=MF,延長ABDF于點(diǎn)G,然后證明∠1=∠G,根據(jù)等角對等邊的性質(zhì)可得AM=GM,再利用“角角邊”證明△CDF和△BGF全等,根據(jù)全等三角形對應(yīng)邊相等可得GF=DF,最后結(jié)合圖形GM=GF+MF即可得證.

解:四邊形是菱形,

,

,

,

,

,

,

,

,

;

證明:為邊的中點(diǎn),

在菱形中,平分

,

中,

,

,

延長的延長線于點(diǎn),

,

,

,

中,

,

,

,

由圖形可知,,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在四邊形中,,對角線交于點(diǎn),平分

1)求證:四邊形是菱形;

2)如圖2,在(1)的條件下,過點(diǎn)的延長線于點(diǎn),連接.若,,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】慶元大道兩側(cè)需要綠化,某綠化組承擔(dān)了此項(xiàng)任務(wù),綠化組工作一段時間后,提高了工作效率,該綠化組完成的綠化面積S(單位m2)與工作時間t(單位:h)之間的函數(shù)關(guān)系如圖所示,則該綠化組提高工作效率前每小時完成的綠化面積是( )

A. 200B. 300C. 400D. 500

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,CE是∠DCB的平分線,FAB的中點(diǎn),AB=6,BC=5,則AEEFFB為( 。

A. 1:2:3 B. 2:1:3 C. 3:2:1 D. 3:1:2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,M、N分別是邊AD、BC邊上的中點(diǎn),且ABM≌△DCME、F分別是線段BM、CM的中點(diǎn).

1)求證:平行四邊形ABCD是矩形.

2)求證:EFMN互相垂直.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,,,且,則的長度是(

A.3B.4C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=AD,BC=DC,ACBD相交于點(diǎn)O,則①CA平分∠BCD;②ACBD;③∠ABC=ADC=90°;④四邊形ABCD的面積為ACBD.上述結(jié)論正確的個數(shù)是( 。

A. 1

B. 2

C. 3

D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,∠ACB90°,ACBC,ADCEBECE,垂足分別是點(diǎn)DE

(1)求證:BEC≌△CDA;

(2)當(dāng)AD3,BE1時,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店將進(jìn)價為8元的商品按每件10元售出,每天可售出200件,現(xiàn)在采取提高商品售價減少銷售量的辦法增加利潤,如果這種商品每件的銷售價每提高0.5元其銷售量就減少10件,

1)問應(yīng)將每件售價定為多少元時,才能使每天利潤為640元且成本最少?

2)問應(yīng)將每件售價定為多少元時,才能使每天利潤最大?

查看答案和解析>>

同步練習(xí)冊答案