如圖,在Rt△ABC中,已知:∠C=90°,∠A=60°,AC=3cm,以斜邊AB的中點(diǎn)P為旋轉(zhuǎn)中心,把這個三角形按逆時針方向旋轉(zhuǎn)90°得到Rt△A′B′C′,則旋轉(zhuǎn)前后兩個直角三角形重疊部分的面積為    cm2
【答案】分析:根據(jù)已知及勾股定理求得DP的長,再根據(jù)全等三角形的判定得到△B′PH≌△BPD,從而根據(jù)直角三角形的性質(zhì)求得GH,BG的長,從而不難求得旋轉(zhuǎn)前后兩個直角三角形重疊部分的面積.
解答:解:在直角△DPB中,BP=AP=AC=3,
∵∠A=60°,
∴DP2+BP2=BD2,
∴x2+32=(2x)2,
∴DP=x=,
∵B′P=BP,∠B=∠B′,∠B′PH=∠BPD=90°,
∴△B′PH≌△BPD,
∴PH=PD=,
∵在直角△BGH中,BH=3+,
∴GH=,BG=
∴S△BGH=××=,S△BDP=×3×=,
∴SDGHP==cm2
點(diǎn)評:此題考查勾股定理,三角形的全等的判定及性質(zhì),旋轉(zhuǎn)的性質(zhì)等知識的綜合運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•莆田質(zhì)檢)如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC于點(diǎn)D,點(diǎn)E是AB上一點(diǎn),以AE為直徑的⊙O過點(diǎn)D,且交AC于點(diǎn)F.
(1)求證:BC是⊙O的切線;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點(diǎn)D,求點(diǎn)D到BC的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,將三角板中一個30°角的頂點(diǎn)D放在AB邊上移動,使這個30°角的兩邊分別與△ABC的邊AC、BC相交于點(diǎn)E、F,且使DE始終與AB垂直.
(1)畫出符合條件的圖形.連接EF后,寫出與△ABC一定相似的三角形;
(2)設(shè)AD=x,CF=y.求y與x之間函數(shù)解析式,并寫出函數(shù)的定義域;
(3)如果△CEF與△DEF相似,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,BD⊥AC,sinA=
3
5
,則cos∠CBD的值是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點(diǎn),連接DE,點(diǎn)P從點(diǎn)A出發(fā),沿折線AD-DE-EB運(yùn)動,到點(diǎn)B停止.點(diǎn)P在AD上以
5
cm/s的速度運(yùn)動,在折線DE-EB上以1cm/s的速度運(yùn)動.當(dāng)點(diǎn)P與點(diǎn)A不重合時,過點(diǎn)P作PQ⊥AC于點(diǎn)Q,以PQ為邊作正方形PQMN,使點(diǎn)M落在線段AC上.設(shè)點(diǎn)P的運(yùn)動時間為t(s).
(1)當(dāng)點(diǎn)P在線段DE上運(yùn)動時,線段DP的長為
(t-2)
(t-2)
cm,(用含t的代數(shù)式表示).
(2)當(dāng)點(diǎn)N落在AB邊上時,求t的值.
(3)當(dāng)正方形PQMN與△ABC重疊部分圖形為五邊形時,設(shè)五邊形的面積為S(cm2),求S與t的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊答案