【題目】某水果店銷售一種水果的成本價是/千克.在銷售過程中發(fā)現(xiàn),當這種水果的價格定在/千克時,每天可以賣出千克.在此基礎上,這種水果的單價每提高/千克,該水果店每天就會少賣出千克.

若該水果店每天銷售這種水果所獲得的利潤是元,則單價應定為多少?

在利潤不變的情況下,為了讓利于顧客,單價應定為多少?

【答案】(1)若該水果店每天銷售這種水果所得利潤是元,則單價應為元或元.因為讓利于顧客,所以定價定為元.

【解析】

(1)根據(jù)等量關系:每千克水果的利潤×每天的銷售量=每天的總利潤420元,可列出方程,解方程即可;
(2)讓定價盡量小即可讓利于顧客.

解:(1)若該水果店每天銷售這種水果所得利潤是420元,設單價應為x元,
由題意得:(x-5)[160-20(x-7)]=420,
化簡得,x2-20x+96=0,
解得 x1=8,x2=12.
答:若該水果店每天銷售這種水果所得利潤是420元,則單價應為8元或12元.

(2)因為讓利于顧客,所以定價定為8元.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,四邊形 ABCD,A=90°,AB=3m,BC=12m,CD=13mDA=4m

(1)求證:BDCB

(2)求四邊形 ABCD 的面積;

(3)如圖 2,以 A 為坐標原點,以 AB、AD所在直線為 x軸、y軸建立直角坐標系,

Py軸上,若 SPBD=S四邊形ABCD, P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90,點D、E分別是邊AB、AC的中點,延長DEF,使得AF//CD,連接BF、CF。求證:四邊形AFCD是菱形。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一次夏令營活動中,小明同學從營地出發(fā),要到地的北偏東方向的處,他先沿正東方向走到地,再沿北偏東方向走,恰能到達目的地,已知,兩地相距,由此可知,,兩地相距________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知頂點為(-3-6)的拋物線經(jīng)過點(-1,-4),下列結(jié)論中錯誤的是(

A.

B. 若點(-2, ),(-5, ) 在拋物線上,則

C.

D. 關于的一元二次方程的兩根為-5-1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將ABC沿角平分線BD所在直線翻折,頂點A恰好落在邊BC的中點E處,AE=BD,那么tanABD=( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與軸,軸分別交于,兩點,在軸上有一點,動點點以每秒2個單位長度的速度向左移動,

1)求直線的表達式;

2)求的面積與移動時間之間的函數(shù)關系式;

3)當為何值時,,求出此時點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標系后,ABC的頂點均在格點上,點B的坐標為(1,0

1)在圖l中畫出ABC關于x軸對稱的A1B1C1;

2)在圖2中,以點O為位似中心,將ABC放大,使放大后的A2B2C2ABC的對應邊的比為21(畫出一種即可). 直接寫出點A的對應點A2的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:已知△ABC中,CA=CB,CD⊥AB于D點,點M為線段AC上一動點,線段MN交DC于點N,且∠BAC=2∠CMN,過點C作CE⊥MN交MN延長線于點E,交線段AB于點F,探索的值.

(1)若∠ACB=90°,點M與點A重合(如圖1)時:①線段CEEF之間的數(shù)量關系是 ;②= ;

(2)在(1)的條件下,若點M不與點A重合(如圖2),請猜想寫出的值,并證明你的猜想

(3)若∠ACB≠90°,∠CAB=,其他條件不變,請直接寫出的值(用含有的式子表示)

查看答案和解析>>

同步練習冊答案