如圖,⊙O的半徑為3,銳角△ABC內(nèi)接于⊙O,BD⊥AC于點D,OM⊥AB于點M,若sin∠CBD=,則AM等于( )

A.1
B.2
C.
D.
【答案】分析:連接AO并延長,交圓O于點N,連接BN,則OM是△ABN的中位線,根據(jù)圓周角定理即可證明∠NAB=∠CBD,即可求得NB的長,根據(jù)三角形中位線定理即可求解.
解答:解:連接AO并延長,交圓O于點N,連接BN.
∵AN是直徑,
∴∠ABN=90°,
∴∠ABN=∠CDB,
又∵∠C=∠N,
∴∠NAB=∠CBD,
∴sin∠NAB=sin∠CBD=,
∵OM⊥AB,OA=3,
∴OM=AO×sin∠NAB=1,
由勾股定理得AM=2
故選D.
點評:本題主要考查了三角形中位線定理,正確作出輔助線,利用等弧所對的圓周角相等把sin∠CBD=進行轉(zhuǎn)化是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑為5,AB=5
3
,C是圓上一點,則∠ACB=
 
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑為3,直徑AB⊥弦CD,垂足為E,點F是BC的中點,那么EF2+OF2=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑為
5
,圓心與坐標原點重合,在直角坐標系中,把橫坐標、縱坐標都是整數(shù)的點稱為格點,則⊙O上格點有
 
個,設L為經(jīng)過⊙O上任意兩個格點的直線,則直線L同時經(jīng)過第一、二、四象限的概率是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑為13cm,弦AB∥CD,兩弦位于圓心O的兩側(cè),AB=24cm,CD=10cm,求AB和CD的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,⊙O的半徑為5,P是弦MN上的一點,且MP:PN=1:2.若PA=2,則MN的長為
6
2
6
2

查看答案和解析>>

同步練習冊答案