【題目】如圖,在正方形ABCD中,AD=5,點E,F(xiàn)是正方形ABCD內的兩點,且AE=FC=3,BE=DF=4,則EF的長為_____.
【答案】
【解析】分析:延長AE交DF于G,再根據(jù)全等三角形的判定得出△AGD與△ABE全等,得出AG=BE=4,由AE=3,得出EG=1,同理得出GF=1,再根據(jù)勾股定理得出EF的長.
詳解:延長AE交DF于G,如圖, ∵AB=5,AE=3,BE=4,
∴△ABE是直角三角形,
同理可得△DFC是直角三角形,可得△AGD是直角三角形,
∴∠ABE+∠BAE=∠DAE+∠BAE,∴∠GAD=∠EBA,
同理可得:∠ADG=∠BAE.
在△AGD和△BAE中,∵,
∴△AGD≌△BAE(ASA),
∴AG=BE=4,DG=AE=3,∴EG=4﹣3=1,
同理可得:GF=1,∴EF=.
故答案為:.
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,學校準備修建一個含內接矩形的菱形花壇(花壇為軸對稱圖形).矩形的四個頂點分別在菱形四條邊上,菱形的高AM=3米,∠ABC=60°.設AE=x米(1≤x≤2),矩形EFGH的面積為S米2.
(1)求S與x的函數(shù)關系式;
(2)學校準備在矩形內種植紅色花草,在四個三角形內種植綠色花草.已知:紅色和綠色植物的價格為200元/米2,100元/米2,當x為何值時,購買花卉所需的總費用最低,并求出最低總費用(結果保留根號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】創(chuàng)意產品蘊含著很多商機,我市某文化創(chuàng)意公司,銷售A,B兩種創(chuàng)意產品,其中A產品的定價是每件20元,B產品的定價是每件30元.
(1)該公司按定價售出A,B兩種產品共600件,若銷售總額不低于15000元,則至少銷售B產品多少件?
(2)2017年8月,該公司按定價售出A產品300件,B產品400件.2017年9月,公司根據(jù)市場情況,適當調整A,B產品的售價,A產品的售價比定價增加了a%,銷量與8月保持不變;B產品的售價比定價減少了a%,銷量比8月份增加了a%,結果9月份A,B產品的銷售總額比8月份增加了a%,求a的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB=10,P是線段AB上的動點,分別以AP、PB為邊在線段AB的同側作等邊△ACP和△PDB,連接CD,設CD的中點為G,當點P從點A運動到點B時,則點G移動路徑的長是_________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,D、E分別是AB,AC的中點,作∠B的角平分線
(1)如圖1,若∠B的平分線恰好經過點E,猜想△ABC是怎樣的特殊三角形,并說明理由;
(2)如圖2,若∠B的平分線交線段DE于點F,已知AB=8,BC=10,求EF的長度;
(3)若∠B的平分線交直線DE于點F,直接寫出AB、BC、EF三者之間的數(shù)量關系。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某班學生在頒獎大會上得知該班獲得獎勵的情況如下表:
已知該班共有27人獲得獎勵(每位同學均可獲得不同級別、不同類別多項獎勵),其中只獲得兩項獎勵的有13人,那么該班獲得獎勵最多的一位同學可能獲得的獎勵為( )
A. 3項 B. 4項 C. 5項 D. 6項
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】來自某綜合市場財務部的報告表明,商場2014年1﹣4月份的投資總額一共是2065萬元,商場2014年第一季度每月利潤統(tǒng)計圖和2014年1﹣4月份利潤率統(tǒng)計圖如下(利潤率=利潤÷投資金額).則商場2014年4月份利潤是__萬元.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】高速公路某收費站出城方向有編號為的五個小客車收費出口,假定各收費出口每20分鐘通過小客車的數(shù)量分別都是不變的.同時開放其中的某兩個收費出口,這兩個出口20分鐘一共通過的小客車數(shù)量記錄如下:
收費出口編號 | |||||
通過小客車數(shù)量(輛) | 260 | 330 | 300 | 360 | 240 |
在五個收費出口中,每20分鐘通過小客車數(shù)量最多的一個出口的編號是___________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,為直徑,為弦.過延長線上一點,作于點,交于點,交于點,是的中點,連接,.
(1)判斷與的位置關系,并說明理由;
(2)若,,,求的長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com