【題目】如圖所示,學(xué)校準(zhǔn)備修建一個含內(nèi)接矩形的菱形花壇(花壇為軸對稱圖形).矩形的四個頂點分別在菱形四條邊上,菱形的高AM=3米,∠ABC=60°.設(shè)AE=x米(1≤x≤2),矩形EFGH的面積為S米2.
(1)求S與x的函數(shù)關(guān)系式;
(2)學(xué)校準(zhǔn)備在矩形內(nèi)種植紅色花草,在四個三角形內(nèi)種植綠色花草.已知:紅色和綠色植物的價格為200元/米2,100元/米2,當(dāng)x為何值時,購買花卉所需的總費用最低,并求出最低總費用(結(jié)果保留根號).
【答案】(1)S=-x2+6x(2)900
【解析】
(1)連接AC、BD,根據(jù)軸對稱的性質(zhì),可得EH∥BD,EF∥AC,△BEF為等邊三角形,從而求出EF.在Rt△AEM中求出EM,繼而得出EH,這樣即可得出S與x的函數(shù)關(guān)系式.
(2)根據(jù)(1)的答案,可求出四個三角形的面積,設(shè)費用為W,則可得出W關(guān)于x的二次函數(shù)關(guān)系式,利用配方法求最值即可.
(1)連接AC、BD.
∵花壇為軸對稱圖形,∴EH∥BD,EF∥AC,∴△BEF∽△BAC.
∵四邊形ABCD是菱形,∴AB=BC.
又∵∠ABC=60°,∴△ABC是等邊三角形.
同理,得到△BEF是等邊三角形.
∵AB==2,∴EF=BE=AB﹣AE=(2﹣x)m.在Rt△AEM中,∠AEM=∠ABD=30°,則EM=AEcos∠AEM=x,∴EH=2EM=x,故可得S=x(2﹣x)=﹣x2+6x;
(2)∵菱形ABCD的面積為2×3=6,矩形EFGH的面積為﹣x2+6x,∴四個三角形的面積為6+x2﹣6x,設(shè)總費用為W,則W=200(﹣x2+6x)+100(6+x2﹣6x)
=﹣100x2+600x+600
=﹣100(x﹣)2+900.
∵1≤x≤2,∴當(dāng)x=時,W取得最大值,最大值為900.
答:當(dāng)x=時,購買花卉所需的總費用最低,最低總費用900.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小剛準(zhǔn)備用一段長 44 米的籬笆圍成三角形,用于養(yǎng)雞。已知一條邊長 x 米,第二條邊是第一條邊的 3 倍多 6 米。
(1)若能圍成一個等腰三角形,求三邊長
(2)若第一邊長最短,寫出 x 的取值范圍 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,△ABC的三個頂點的位置如圖所示
(1)請畫出△ABC關(guān)于y軸對稱的△A′B′C′;(其中A′、B′、C′分別是A、B、C的對應(yīng)點,不寫畫法)
(2)直接寫出A′B′C′三點的坐標(biāo);
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我區(qū)某中學(xué)開展“社會主義核心價值觀”演講比賽活動,九(1)、九(2)班根據(jù)初賽成績各選出5名選手參加復(fù)賽,兩個班各選出的5名選手的復(fù)賽成績(滿分為100分)如圖所示.根據(jù)圖中數(shù)據(jù)解決下列問題:
(1)九(1)班復(fù)賽成績的中位數(shù)是 分,九(2)班復(fù)賽成績的眾數(shù)是 分;
(2)小明同學(xué)已經(jīng)算出了九(1)班復(fù)賽的平均成績 =85分;方差S2= [(85﹣85)2+(75﹣85)2+(80﹣85)2+(85﹣85)2+(100﹣85)2]=70(分2),請你求出九(2)班復(fù)賽的平均成績x2和方差S22;
(3)根據(jù)(2)中計算結(jié)果,分析哪個班級的復(fù)賽成績較好?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲,乙,丙三種作物,分別在山腳,山腰和山頂三個試驗田進行試驗,每個試驗田播種二十粒種子,農(nóng)業(yè)專家將每個試驗田成活的種子個數(shù)統(tǒng)計如條形統(tǒng)計圖,如圖所示,下面有四個推斷:
①甲種作物受環(huán)境影響最;②乙種作物平均成活率最高;
③丙種作物最適合播種在山腰;
④如果每種作物只能在一個地方播種,那么山腳,山腰和山頂分別播種甲,乙,丙三種作物能使得成活率最高.其中合理的是( 。
A. ①③ B. ①④ C. ②③ D. ②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC位于第二象限,點B的坐標(biāo)是(﹣5,2),先把△ABC向右平移4個單位長度得到△A1B1C1,再作與△A1B1C1關(guān)于于x軸對稱的△A2B2C2,則點B的對應(yīng)點B2的坐標(biāo)是( 。
A. (﹣3,2) B. (2,﹣3) C. (1,2) D. (﹣1,﹣2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,∠BAC=90°,四邊形EBOC是平行四邊形,EB交⊙O于點D,連接CD并延長交AB的延長線于點F.
(1)求證:CF是⊙O的切線;
(2)若∠F=30°,EB=6,求圖中陰影部分的面積(結(jié)果保留根號和π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若數(shù)a使關(guān)于x的分式方程的解為正數(shù),使關(guān)于y的不等式組無解,則所有滿足條件的整數(shù)a的值之積是( 。
A. 360 B. 90 C. 60 D. 15
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AD=5,點E,F(xiàn)是正方形ABCD內(nèi)的兩點,且AE=FC=3,BE=DF=4,則EF的長為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com