【題目】如圖,AB為⊙O的直徑,點(diǎn)C在⊙O上,延長(zhǎng)BC至點(diǎn)D,使DC=CB,延長(zhǎng)DA與⊙O的另一個(gè)交點(diǎn)為E,連接AC,CE.

(1)求證:∠B=∠D;
(2)若AB=4,BC﹣AC=2,求CE的長(zhǎng).

【答案】
(1)證明:∵AB為⊙O的直徑,

∴∠ACB=90°,

∴AC⊥BC,

又∵DC=CB,

∴AD=AB,

∴∠B=∠D


(2)解:設(shè)BC=x,則AC=x﹣2,

在Rt△ABC中,AC2+BC2=AB2,

∴(x﹣2)2+x2=42

解得:x1=1+ ,x2=1﹣ (舍去),

∵∠B=∠E,∠B=∠D,

∴∠D=∠E,

∴CD=CE,

∵CD=CB,

∴CE=CB=1+


【解析】(1)由AB為⊙O的直徑,易證得AC⊥BD,又由DC=CB,根據(jù)線段垂直平分線的性質(zhì),可證得AD=AB,即可得:∠B=∠D;(2)首先設(shè)BC=x,則AC=x﹣2,由在Rt△ABC中,AC2+BC2=AB2 , 可得方程:(x﹣2)2+x2=42 , 解此方程即可求得CB的長(zhǎng),繼而求得CE的長(zhǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:cos60°﹣2﹣1+﹣(π﹣3)0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC是等腰三角形,頂角∠BAC=α(α<60°),D是BC邊上的一點(diǎn),連接AD,線段AD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α到AE,過點(diǎn)E作BC的平行線,交AB于點(diǎn)F,連接DE,BE,DF.

(1)求證:BE=CD;
(2)若AD⊥BC,試判斷四邊形BDFE的形狀,并給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:關(guān)于x的方程x2+(8﹣4m)x+4m2=0
(1)若方程有兩個(gè)相等的實(shí)數(shù)根,求m的值,并求出此時(shí)方程的根;
(2)是否存在實(shí)數(shù)m,使方程的兩個(gè)實(shí)數(shù)根的平方和等于136?若存在,請(qǐng)求出滿足條件的m值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有正方形ABCD,把△ADE順時(shí)針旋轉(zhuǎn)到△ABF的位置.其中AD=4,AE=5,則BF=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=3,BC=4,點(diǎn)E是BC邊上一點(diǎn),連接AE,把∠B沿AE折疊,使點(diǎn)B落在點(diǎn)B′處.當(dāng)△CEB′為直角三角形時(shí),BE的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們可以通過類比聯(lián)想,引申拓展研究典型題目,可達(dá)到解一題知一類的目的,下面是一個(gè)案例,請(qǐng)補(bǔ)充完整
原題:如圖1,點(diǎn)E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,連接EF,則EF=BE+DF,試說明理由.

(1)思路梳理
∵AB=AD,
∴把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合.
∵∠ADC=∠B=90°,
∴∠FDG=180°,點(diǎn)F、D、G共線.
根據(jù) , 易證△AFG≌ , 得EF=BE+DF.
(2)類比引申
如圖2,四邊形ABCD中,AB=AD,∠BAD=90°點(diǎn)E、F分別在邊BC、CD上,∠EAF=45°.若∠B、∠D都不是直角,則當(dāng)∠B與∠D滿足等量關(guān)系時(shí),仍有EF=BE+DF.
(3)聯(lián)想拓展
如圖3,在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D、E均在邊BC上,且∠DAE=45°.猜想BD、DE、EC應(yīng)滿足的等量關(guān)系,并寫出推理過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校在落實(shí)國(guó)家“營(yíng)養(yǎng)餐”工程中,選用了A,B,C,D種不同類型的套餐.實(shí)行一段時(shí)間后,學(xué)校決定在全校范圍內(nèi)隨機(jī)抽取部分學(xué)生對(duì)“你喜歡的套餐類型(必選且只選一種)”進(jìn)行問卷調(diào)查,將調(diào)查情況整理后,繪制成如圖所示的兩個(gè)統(tǒng)計(jì)圖.

請(qǐng)你根據(jù)以上信息解答下列問題:
(1)在這次調(diào)查中,一共抽取了名學(xué)生;
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)如果全校有1200名學(xué)生,請(qǐng)你估計(jì)其中喜歡D套餐的學(xué)生的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,任意四邊形ABCD中,E,F(xiàn),G,H分別是AB,BC,CD,DA上的點(diǎn),對(duì)于四邊形EFGH的形狀,某班學(xué)生在一次數(shù)學(xué)活動(dòng)課中,通過動(dòng)手實(shí)踐,探索出如下結(jié)論,其中錯(cuò)誤的是(
A.當(dāng)E,F(xiàn),G,H是各邊中點(diǎn),且AC=BD時(shí),四邊形EFGH為菱形
B.當(dāng)E,F(xiàn),G,H是各邊中點(diǎn),且AC⊥BD時(shí),四邊形EFGH為矩形
C.當(dāng)E,F(xiàn),G,H不是各邊中點(diǎn)時(shí),四邊形EFGH可以為平行四邊形
D.當(dāng)E,F(xiàn),G,H不是各邊中點(diǎn)時(shí),四邊形EFGH不可能為菱形

查看答案和解析>>

同步練習(xí)冊(cè)答案