如圖,直線AB,CD分別與直線AC相交于點A,C,與直線BD相交于點B,D.若∠1=∠2,∠3=75°,求∠4、∠5的度數(shù)。

 

【答案】

75°,105°

【解析】

試題分析:先根據(jù)∠1=∠2證得AB∥CD,再根據(jù)平行線的性質(zhì)及鄰補角的定義求解即可.

∵∠1=∠2, 

∴AB∥CD(同位角相等,兩直線平行),  

∴∠4=∠3="75°" (兩直線平行,內(nèi)錯角相等) 

∠3+∠5=180°(兩直線平行,同旁內(nèi)角互補) 

∵∠3=75°

∴∠5=180°-75°="105°" (等式的性質(zhì)).

考點:平行線的判定和性質(zhì),鄰補角的定義

點評:平行線的判定和性質(zhì)是初中數(shù)學(xué)的重點,貫穿于整個初中數(shù)學(xué)的學(xué)習(xí),是中考中比較常見的知識點,一般難度不大,需熟練掌握.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

21、如圖,直線AB、CD、EF都經(jīng)過點O,且AB⊥CD,∠COE=35°,求∠DOF、∠BOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直線AB與CD相交于點O,OE⊥AB,OF⊥CD.
(1)圖中∠AOF的余角是
 
(把符合條件的角都填出來).
(2)圖中除直角相等外,還有相等的角,請寫出三對:
 
;②
 
;③
 

(3)①如果∠AOD=140°.那么根據(jù)
 
,可得∠BOC=
 
度.
②如果∠EOF=
15
∠AOD
,求∠EOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

25、完成推理填空:如圖:直線AB、CD被EF所截,若已知AB∥CD,
求證:∠1=∠2.
請你認真完成下面填空.
證明:∵AB∥CD    (已知),
∴∠1=∠
3
( 兩直線平行,
同位角相等
 )
又∵∠2=∠3,(
對頂角相等
 )
∴∠1=∠2 (
等量代換
 ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線AB、CD、EF相交于點O,AB⊥CD,OG平分∠AOE,∠FOD=24°,∠COG的度數(shù)=
33°
33°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線AB,CD相交于O點,EO⊥CD,垂足為O點,若∠BOE=50°,求∠AOD的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案