【題目】二次函數(shù)的部分圖象如圖所示,圖象過點(diǎn),對(duì)稱軸為直線,下列結(jié)論: ; ; ; 若點(diǎn)、點(diǎn)、點(diǎn)在該函數(shù)圖象上,則; 若方程的兩根為和,且,則其中正確的結(jié)論是______.
【答案】(1)(3)(5)
【解析】分析:(1)正確.根據(jù)對(duì)稱軸公式計(jì)算即可.
(2)錯(cuò)誤,利用x=-3時(shí),y<0,即可判斷.
(3)正確.由圖象可知拋物線經(jīng)過(-1,0)和(5,0),列出方程組求出a、b即可判斷.
(4)錯(cuò)誤.利用函數(shù)圖象即可判斷.
(5)正確.利用二次函數(shù)與二次不等式關(guān)系即可解決問題.
詳解:(1)正確.∵-=2,
∴4a+b=0.故正確.
(2)錯(cuò)誤.∵x=-3時(shí),y<0,
∴9a-3b+c<0,
∴9a+c<3b,故(2)錯(cuò)誤.
(3)正確.由圖象可知拋物線經(jīng)過(-1,0)和(5,0),
∴
解得,
∴8a+7b+2c=8a-28a-10a=-30a,
∵a<0,
∴8a+7b+2c>0,故(3)正確.
(4)錯(cuò)誤,∵點(diǎn)A(-3,y1)、點(diǎn)B(-,y2)、點(diǎn)C(,y3),
∵-2=,2-(-)=,
∴<
∴點(diǎn)C離對(duì)稱軸的距離近,
∴y3>y2,
∵a<0,-3<-<2,
∴y1<y2
∴y1<y2<y3,故(4)錯(cuò)誤.
(5)正確.∵a<0,
∴(x+1)(x-5)=-3/a>0,
即(x+1)(x-5)>0,
故x<-1或x>5,故(5)正確.
∴正確的有三個(gè),
故正確的是(1)(3)(5).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,等邊邊長(zhǎng)為6,是的中線,為線段(不包括端點(diǎn)、上一動(dòng)點(diǎn),以為一邊且在左下方作如圖所示的等邊,連結(jié).
(1)點(diǎn)在運(yùn)動(dòng)過程中,線段與始終相等嗎?說說你的理由;
(2)若延長(zhǎng)至,使得,如圖2,問:
①求出此時(shí)的長(zhǎng);
②當(dāng)點(diǎn)在線段的延長(zhǎng)線上時(shí),判斷的長(zhǎng)是否為定值,若是請(qǐng)直接寫出的長(zhǎng);若不是請(qǐng)簡(jiǎn)單說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,點(diǎn)D在邊AB上,連接CD,將線段CD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°至CE位置,連接AE.
(1)求證:AB⊥AE;
(2)若BC2=ADAB,求證:四邊形ADCE為正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,OC平分∠AOB,點(diǎn)P在OC上,若⊙P與OA相切,那么⊙P與OB位置關(guān)系是 .
(2)如圖2,⊙O的半徑為2,∠AOB=120°,
①若點(diǎn)P是⊙O上的一個(gè)動(dòng)點(diǎn),當(dāng)PA=PB時(shí),是否存在⊙Q,同時(shí)與射線PA.PB相切且與⊙O相切,如果存在,求出⊙Q的半徑; 如果不存在,請(qǐng)說明理由.
②若點(diǎn)P在BO的延長(zhǎng)線上,且滿足PA⊥PB,是否存在⊙Q,同時(shí)與射線PA.PB相切且與⊙O相切,如果存在,請(qǐng)直接寫出⊙Q的半徑; 如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y=x2+(2m﹣1)x﹣2m.
(1)若m=1,拋物線C交x軸于A,B兩點(diǎn),求AB的長(zhǎng);
(2)若一次函數(shù)y=kx+mk的圖象與拋物線C有唯一公共點(diǎn),求m的取值范圍;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,點(diǎn)P是正方形ABCD的對(duì)角線BD上一點(diǎn),PE⊥BC于點(diǎn)E,PF⊥CD于點(diǎn)F,連接EF給出下列五個(gè)結(jié)論:①AP=EF;②AP⊥EF;③△APD一定是等腰三角形;④∠PFE=∠BAP;⑤PD=EC.其中正確結(jié)論的番號(hào)是( )
A.①②④⑤B.①②③④⑤C.①②④D.①④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,從熱氣球C處測(cè)得地面A,B兩點(diǎn)的俯角分別為30°,45°,此時(shí)熱氣球C處所在位置到地面上點(diǎn)A的距離為400米.求地面上A,B兩點(diǎn)間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知D是等邊△ABC邊AB上的一點(diǎn),現(xiàn)將△ABC折疊,使點(diǎn)C與D重合,折痕為EF,點(diǎn)E、
F分別在AC和BC上.如圖,若AD∶DB=1∶4,則CE∶CF=________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com