(2013•門頭溝區(qū)一模)如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=
mx
的圖象交于A(2,3)、B(-3,n)兩點(diǎn).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)若P是y軸上一點(diǎn),且滿足△PAB的面積是5,直接寫出OP的長(zhǎng).
分析:(1)將A坐標(biāo)代入反比例函數(shù)解析式中求出m的值,即可確定出反比例函數(shù)解析式;設(shè)直線AB解析式為y=kx+b,將B坐標(biāo)代入反比例解析式中求出n的值,確定出B坐標(biāo),將A與B坐標(biāo)代入一次函數(shù)解析式中求出k與b的值,即可確定出一次函數(shù)解析式;
(2)如圖所示,對(duì)于一次函數(shù)解析式,令x=0求出y的值,確定出C坐標(biāo),得到OC的長(zhǎng),三角形ABP面積由三角形ACP面積與三角形BCP面積之和求出,由已知的面積求出PC的長(zhǎng),即可求出OP的長(zhǎng).
解答:解:(1)∵反比例函數(shù)y=
m
x
的圖象經(jīng)過點(diǎn)A(2,3),
∴m=6.
∴反比例函數(shù)的解析式是y=
6
x

Q點(diǎn)A(-3,n)在反比例函數(shù)y=
6
x
的圖象上,
∴n=-2,
∴B(-3,-2),
∵一次函數(shù)y=kx+b的圖象經(jīng)過A(2,3)、B(-3,-2)兩點(diǎn),
2k+b=3
-k+b=-2
,
解得:
k=1
b=1
,
∴一次函數(shù)的解析式是y=x+1;

(2)對(duì)于一次函數(shù)y=x+1,令x=0求出y=1,即C(0,1),OC=1,
根據(jù)題意得:S△ABP=
1
2
PC×2+
1
2
PC×3=5,
解得:PC=2,
則OP=OC+CP=1+2=3或OP=CP-OC=2-1=1.
點(diǎn)評(píng):此題考查了一次函數(shù)與反比例函數(shù)的交點(diǎn)問題,涉及的知識(shí)有:待定系數(shù)法求函數(shù)解析式,坐標(biāo)與圖形性質(zhì),以及三角形的面積求法,熟練掌握待定系數(shù)法是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•門頭溝區(qū)二模)PM2.5是大氣中粒徑小于等于2.5微米的顆粒物,稱為細(xì)顆粒物,是表征環(huán)境空氣質(zhì)量的主要污染物指標(biāo).2.5微米等于0.0000025米,把0.0000025用科學(xué)記數(shù)法表示為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•門頭溝區(qū)二模)已知圓錐側(cè)面展開圖的扇形半徑為2cm,面積是
4
3
πcm2
,則扇形的弧長(zhǎng)和圓心角的度數(shù)分別為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•門頭溝區(qū)二模)如圖,在平行四邊形ABCD中,AC=12,BD=8,P是AC上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作EF∥BD,與平行四邊形的兩條邊分別交于點(diǎn)E、F.設(shè)CP=x,EF=y,則下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象大致是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•門頭溝區(qū)二模)某中學(xué)初三年級(jí)的學(xué)生開展測(cè)量物體高度的實(shí)踐活動(dòng),他們要測(cè)量一幢建筑物AB的高度.如圖,他們先在點(diǎn)C處測(cè)得建筑物AB的頂點(diǎn)A的仰角為30°,然后向建筑物AB前進(jìn)20m到達(dá)點(diǎn)D處,又測(cè)得點(diǎn) A的仰角為60°,則建筑物AB的高度是
10
3
10
3
m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•門頭溝區(qū)二模)如圖,在平面直角坐標(biāo)系xOy中,已知矩形ABCD的兩個(gè)頂點(diǎn)B、C的坐標(biāo)分別是B(1,0)、C(3,0).直線AC與y軸交于點(diǎn)G(0,6).動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿線段AB向點(diǎn)B運(yùn)動(dòng).同時(shí)動(dòng)點(diǎn) Q從點(diǎn)C出發(fā),沿線段CD向點(diǎn)D運(yùn)動(dòng).點(diǎn)P、Q的運(yùn)動(dòng)速度均為每秒1個(gè)單位,運(yùn)動(dòng)時(shí)間為t秒.過點(diǎn)P作PE⊥AB交AC于點(diǎn)E.
(1)求直線AC的解析式;
(2)當(dāng)t為何值時(shí),△CQE的面積最大?最大值為多少?
(3)在動(dòng)點(diǎn)P、Q運(yùn)動(dòng)的過程中,當(dāng)t為何值時(shí),在矩形ABCD內(nèi)(包括邊界)存在點(diǎn)H,使得以C、Q、E、H為頂點(diǎn)的四邊形是菱形?

查看答案和解析>>

同步練習(xí)冊(cè)答案