如圖,四邊形ABPC中,PA=PB=PC,且∠BPC=156°,那么∠BAC的大小是


  1. A.
    100°
  2. B.
    101°
  3. C.
    102°
  4. D.
    103°
C
分析:根據(jù)等邊對(duì)等角可得∠B=∠PAB,∠PAC=∠C,然后求出∠B+∠C=∠BAC,再根據(jù)四邊形的內(nèi)角和定理列式計(jì)算即可得解.
解答:∵PA=PB=PC,
∴∠B=∠PAB,∠PAC=∠C,
∴∠B+∠C=∠BAC,
在四邊形ABPC中,∠BAC+(∠B+∠C)+∠BPC=360°,
∴∠BAC+∠BAC+156°=360°,
解得∠BAC=102°.
故選C.
點(diǎn)評(píng):本題考查了等腰三角形的性質(zhì),主要利用了等邊對(duì)等角的性質(zhì),注意整體思想的利用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,正三角形ABC內(nèi)接于⊙O,P是劣弧BC上的任意一點(diǎn),若PA=2,則四邊形ABPC的面積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知拋物線y=ax2+bx+c過(guò)A(3,3.5)、B(4,2)、C(0,2)三點(diǎn),點(diǎn)P是x軸上的動(dòng)點(diǎn).
(1)求拋物線的解析式;
(2)如圖甲所示,連接AC、CP、PB、BA,是否存在點(diǎn)P,使四邊形ABPC為等腰梯形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由;
(3)點(diǎn)H是題中拋物線對(duì)稱軸l上的動(dòng)點(diǎn),如圖乙所示,求四邊形AHPB周長(zhǎng)的最小值.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABPC中,PA=PB=PC,且∠BPC=156°,那么∠BAC的大小是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=x2+bx+c的圖象與x軸交于A、B兩點(diǎn),A點(diǎn)在原點(diǎn)的左側(cè),B點(diǎn)的坐標(biāo)為(3,0),與y軸交于C(0,-3)點(diǎn),點(diǎn)P是直線BC下方的拋物線上一動(dòng)點(diǎn).
(1)求這個(gè)二次函數(shù)的解析式;
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形ABPC的面積最大,并求出此時(shí)P點(diǎn)的坐標(biāo)和四邊形ABPC的最大面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案