如圖,AB,CD是⊙O的弦,AB⊥CD,BE是⊙O的直徑.若AC=3,則DE=________.

3
分析:首先連接AE,由BE是⊙O的直徑,可得∠BAE=90°,又由AB⊥CD,可證得AE∥CD,繼而可證得AC=DE,則可求得答案.
解答:解:連接AE,
∵BE是⊙O的直徑,
∴∠BAE=90°,
即AB⊥AE,
∵AB⊥CD,
∴AE∥CD,
∴∠ACD+∠CAE=180°,
∵四邊形ACDE是⊙O的內(nèi)接四邊形,
∴∠CAE+∠CDE=180°,
∴∠ACD=∠CDE,
=,
=,
∴DE=AC=3.
故答案為:3.
點(diǎn)評(píng):此題考查了圓周角定理與圓的內(nèi)接四邊形的性質(zhì).此題難度適中,注意掌握輔助線的作法,注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

21、如圖,AB、CD是⊙O的弦,∠A=∠C.求證:AB=CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,AB、CD是水平放置的輪盤(pán)(俯視圖)上兩條互相垂直的直徑,一個(gè)小鋼球在輪盤(pán)上自由滾動(dòng),該小鋼球最終停在陰影區(qū)域的概率為(  )
A、
1
4
B、
1
5
C、
3
8
D、
2
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•泰安)如圖,AB,CD是⊙O的兩條互相垂直的直徑,點(diǎn)O1,O2,O3,O4分別是OA、OB、OC、OD的中點(diǎn),若⊙O的半徑為2,則陰影部分的面積為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•盤(pán)錦)如圖,AB,CD是⊙O的直徑,點(diǎn)E在AB延長(zhǎng)線上,F(xiàn)E⊥AB,BE=EF=2,F(xiàn)E的延長(zhǎng)線交CD延長(zhǎng)線于點(diǎn)G,DG=GE=3,連接FD.
(1)求⊙O的半徑;
(2)求證:DF是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,AB,CD是⊙O的兩條弦,且AB=CD,點(diǎn)M是
AC
的中點(diǎn),求證:MB=MD.

查看答案和解析>>

同步練習(xí)冊(cè)答案