【題目】 (2016浙江臺州第19題)如圖,點(diǎn)P在矩形ABCD的對角線AC上,且不與點(diǎn)A,C重合,過點(diǎn)P分別作邊AB,AD的平行線,交兩組對邊于點(diǎn)E,F(xiàn)和G,H.
(1)求證:△PHC≌△CFP;
(2)證明四邊形PEDH和四邊形PFBG都是矩形,并直接寫出它們面積之間的關(guān)系.
【答案】(1)證明見解析;(2)證明見解析,面積相等.
【解析】
試題分析:(1)由矩形的性質(zhì)得出對邊平行,再根據(jù)平行線的性質(zhì)得出相等的角,結(jié)合全等三角形的判定定理AAS即可得出△PHC≌△CFP;
(2)由矩形的性質(zhì)找出∠D=∠B=90°,再結(jié)合對邊互相平行即可證出四邊形PEDH和四邊形PFBG都是矩形,通過角的正切值,在直角三角形中表示出直角邊的關(guān)系,利用矩形的面積公式即可得出兩矩形面積相等.
試題解析:(1)∵四邊形ABCD為矩形,∴AB∥CD,AD∥BC.
∵PF∥AB,∴PF∥CD,∴∠CPF=∠PCH.
∵PH∥AD,∴PH∥BC,∴∠PCF=∠CPH.
在△PHC和△CFP中,∵∠CPF=∠PCH,PC=CP,∠PCF=∠CPH,∴△PHC≌△CFP(ASA).
(2)∵四邊形ABCD為矩形,∴∠D=∠B=90°.
又∵EF∥AB∥CD,GH∥AD∥BC,∴四邊形PEDH和四邊形PFBG都是矩形.
∵EF∥AB,∴∠CPF=∠CAB.
在Rt△AGP中,∠AGP=90°,PG=AGtan∠CAB.
在Rt△CFP中,∠CFP=90°,CF=PFtan∠CPF.
S矩形DEPH=DEEP=CFEP=PFEPtan∠CPF;
S矩形PGBF=PGPF=AGPFtan∠CAB=EPPFtan∠CAB.
∵tan∠CPF=tan∠CAB,∴S矩形DEPH=S矩形PGBF.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某種植基地2016年蔬菜產(chǎn)量為80噸,2018年蔬菜產(chǎn)量達(dá)到100噸,求蔬菜產(chǎn)量的年平均增長率,設(shè)蔬菜產(chǎn)量的年平均增長率為x,則可列方程為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O是菱形ABCD的對角線AC、BD的交點(diǎn),E、F分別是OA、OC的中點(diǎn).下列結(jié)論:①S△ADE=S△EOD;②四邊形BFDE也是菱形;③四邊形ABCD的面積為EF×BD;④∠ADE=∠EDO;⑤△DEF是軸對稱圖形;其中正確的結(jié)論有( 。.
A.5個(gè)
B.4個(gè)
C.3個(gè)
D.2個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=2(x+3)2+1的頂點(diǎn)坐標(biāo)是( )
A.(3,1)
B.(3,﹣1)
C.(﹣3,1)
D.(﹣3,﹣1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,延長AB至E,延長CD至F,BE=DF,連接EF,與BC、AD分別相交于P、Q兩點(diǎn).
(1)求證:CP=AQ;
(2)若BP=1,PQ=,∠AEF=45°,求矩形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為10,AG=CH=8,BG=DH=6,連接GH,則線段GH的長為( )
8.
A. B.2 C. D.10﹣5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一元二次方程x2﹣4x+2m﹣6=0有兩個(gè)相等的實(shí)數(shù)根,則m等于( )
A.2B.3C.4D.5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com