已知:在矩形ABCD中,AB=2,E為BC邊上的一點,沿直線DE將矩形折疊,使C點落在AB邊上的C點處.過C′作C′H⊥DC,C′H分別交DE、DC于點G、H,連接CG、CC′,CC′交GE于點F.
(1)求證:四邊形CGC′E為菱形;
(2)設(shè)sin∠CDE=x,并設(shè)y=,試將y表示成x的函數(shù);
(3)當(2)中所求得的函數(shù)的圖象達到最高點時,求BC的長.
【答案】分析:(1)易得CC'被DE垂直平分,可得所求的四邊形有2組鄰邊相等,以及一對對應(yīng)角相等,利用圖中的兩個垂直得到C'H∥BC,可得到一對內(nèi)錯角相等,利用等邊對等角,得到C′G=C′E,那么可得4條邊相等,那么是菱形.
(2)給出了y的基本形式,那么可設(shè)分母中的單獨的一個字母為未知量,其他線段用這條線段以及相應(yīng)的x表示.
(3)函數(shù)圖象達到最高點,那么應(yīng)是當x=-時y相應(yīng)的值.充分利用(2)在中的DG:DE的值,求得DE值,利用勾股定理可求得C'H的長,那么BC=C'H.
解答:(1)證明:根據(jù)題意,C、C′兩點關(guān)于直線DE成軸對稱,DE是線段CC′的垂直平分線,
故EC=EC′,GC=GC′,∠C′EG=∠CEG(2分)
由C′H⊥DC,BC⊥DC得:C′G∥CE,
∴∠C′GE=∠GEC,
∵∠C′EG=∠CEG,
∴∠C′GE=∠C′EG,
∴C′G=C′E,
∴C′G=C′E=EC=GC,
∴四邊形CGCE為菱形.(4分)

(2)解:設(shè)DE=a,由sin∠CDE==x,
則CE=ax,又DC⊥CE,CF⊥DE,
∴△DCE∽△CFE,

(6分)
DG=DE-2EF=a-2ax2,
.(7分)
∴y=-2x2+x+1.(8分)

(3)解:由(2)得:y=-2x2+x+1=,(9分)
可見,當x=時,此函數(shù)的圖象達到最高點,此時
∵GH∥CE,
,
由DC=2,得DH=.(10分)
在Rt△DHC′中.(11分)
∴BC=.(12分)
點評:本題綜合考查了菱形的判定,三角形的相似,勾股定理等知識.使用的判定為:四條邊相等的四邊形是菱形.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

已知,在矩形ABCD中,AB=3,AD=4,以點A為圓心,r為半徑畫圓,矩形的四個頂點恰好有一個在⊙A外,則半徑r的范圍是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1所示,已知:在矩形ABCD中,AB=6,點P在AD邊上.
(1)如果∠BPC=90°,求證:△ABP∽△DPC;
(2)在問題(1)中,當AD=13時,求tan∠PBC;
(3)如圖2所示,原題目中的條件不變,且AP=3,DP=9,M是線段BP上一點,過點M作MN∥BC交PC于點N,分別過點M,N作ME⊥BC于點E,NF⊥BC于點F,并且矩形MEFN和矩形ABCD的長與寬之比相等,求MN.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•臨沂)已知,在矩形ABCD中,AB=a,BC=b,動點M從點A出發(fā)沿邊AD向點D運動.
(1)如圖1,當b=2a,點M運動到邊AD的中點時,請證明∠BMC=90°;
(2)如圖2,當b>2a時,點M在運動的過程中,是否存在∠BMC=90°,若存在,請給與證明;若不存在,請說明理由;
(3)如圖3,當b<2a時,(2)中的結(jié)論是否仍然成立?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•北塘區(qū)一模)已知,在矩形ABCD中,AB=4cm,BC=3cm,點M為邊BC的中點,點P為邊CD上的動點(點P異于C,D兩點),點P從點C出發(fā),以2cm/s的速度,沿CD作勻速運動.連接PM,過點P作PM的垂線與邊DA相交于點E(如圖),設(shè)點P運動的時間為t(s)
(1)DE的長為
-
8
3
t2+
16
3
t
-
8
3
t2+
16
3
t
(用含t的代數(shù)式表示);
(2)若點P從點C出發(fā)的同時,直線BD沿著射線AD的方向以3cm/s的速度從D點出發(fā),以CP長為直徑作圓⊙O,當點P到達點D時,直線BD也停止運動.當⊙O與直線BD相切時,求DE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•重慶)已知,在矩形ABCD中,E為BC邊上一點,AE⊥DE,AB=12,BE=16,F(xiàn)為線段BE上一點,EF=7,連接AF.如圖1,現(xiàn)有一張硬質(zhì)紙片△GMN,∠NGM=90°,NG=6,MG=8,斜邊MN與邊BC在同一直線上,點N與點E重合,點G在線段DE上.如圖2,△GMN從圖1的位置出發(fā),以每秒1個單位的速度沿EB向點B勻速移動,同時點P從A點出發(fā),以每秒1個單位的速度沿AD向點D勻速移動,點Q為直線GN與線段AE的交點,連接PQ.當點N到達終點B時,△GMN和點P同時停止運動.設(shè)運動時間為t秒,解答下列問題:

(1)在整個運動過程中,當點G在線段AE上時,求t的值;
(2)在整個運動過程中,是否存在點P,使△APQ是等腰三角形?若存在,求出t的值;若不存在,說明理由;
(3)在整個運動過程中,設(shè)△GMN與△AEF重疊部分的面積為S.請直接寫出S與t之間的函數(shù)關(guān)系式以及自變量t的取值范圍.

查看答案和解析>>

同步練習冊答案