【題目】如圖,C地在A地的正東方向,因有大山阻隔,由A地到C地需繞行B地,已知B地位于A地北偏東67°方向,距離A地520km,C地位于B地南偏東30°方向,若打通穿山隧道,建成兩地直達(dá)高鐵,求A地到C地之間高鐵線路的長(zhǎng).(結(jié)果保留整數(shù))
(參考數(shù)據(jù):sin67°≈ ,cos67°≈ ,tan67°≈ , ≈1.73)
【答案】解:過(guò)點(diǎn)B作BD⊥AC于點(diǎn)D,
∵B地位于A地北偏東67°方向,距離A地520km,
∴∠ABD=67°,
∴AD=ABsin67°=520× = =480km,
BD=ABcos67°=520× = =200km.
∵C地位于B地南偏東30°方向,
∴∠CBD=30°,
∴CD=BDtan30°=200× = ,
∴AC=AD+CD=480+ ≈480+115=595(km).
答:A地到C地之間高鐵線路的長(zhǎng)為595km.
【解析】過(guò)點(diǎn)B作BD⊥AC于點(diǎn)D,利用銳角三角函數(shù)的定義求出AD及CD的長(zhǎng),進(jìn)而可得出結(jié)論.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB= ,E是BC的中點(diǎn),AE⊥BD于點(diǎn)F,則CF的長(zhǎng)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,CD平分∠ACB交⊙O于D,過(guò)點(diǎn)D作PQ∥AB分別交CA、CB延長(zhǎng)線于P、Q,連接BD.
(1)求證:PQ是⊙O的切線;
(2)求證:BD2=ACBQ;
(3)若AC、BQ的長(zhǎng)是關(guān)于x的方程x+ =m的兩實(shí)根,且tan∠PCD= ,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC為等邊三角形,AB=2.若P為△ABC內(nèi)一動(dòng)點(diǎn),且滿足∠PAB=∠ACP,則線段PB長(zhǎng)度的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一次函數(shù)y=kx+b(k≠0)的圖象經(jīng)過(guò)A(﹣1,﹣4),B(2,2)兩點(diǎn),P為反比例函數(shù)y= 圖象上一動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),過(guò)點(diǎn)P作y軸的垂線,垂足為C,則△PCO的面積為( )
A.2
B.4
C.8
D.不確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:Rt△EFP和矩形ABCD如圖①擺放(點(diǎn)P與點(diǎn)B重合),點(diǎn)F,B(P),C在同一直線上,AB=EF=6cm,BC=FP=8cm,∠EFP=90°,如圖②,△EFP從圖①的位置出發(fā),沿BC方向勻速運(yùn)動(dòng),速度為1cm/s,EP與AB交于點(diǎn)G;同時(shí),點(diǎn)Q從點(diǎn)C出發(fā),沿CD方向勻速運(yùn)動(dòng),速度為1cm/s.過(guò)點(diǎn)Q作QM⊥BD,垂足為H,交AD于點(diǎn)M,連接AF,F(xiàn)Q,當(dāng)點(diǎn)Q停止運(yùn)動(dòng)時(shí),△EFQ也停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t(s)(0<t<6),解答下列問題:
(1)當(dāng)t為何值時(shí),PQ∥BD?
(2)設(shè)五邊形AFPQM的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;
(3)在運(yùn)動(dòng)過(guò)程中,是否存在某一時(shí)刻t,使S五邊形AFPQM:S矩形ABCD=9:8?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由.
(4)在運(yùn)動(dòng)過(guò)程中,是否存在某一時(shí)刻t,使點(diǎn)M在線段PG的垂直平分線上?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是半圓直徑,半徑OC⊥AB于點(diǎn)O,D為半圓上一點(diǎn),AC∥OD,AD與OC交于點(diǎn)E,連結(jié)CD、BD,給出以下三個(gè)結(jié)論:①OD平分∠COB;②BD=CD;③CD2=CECO,其中正確結(jié)論的序號(hào)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中BC=2,AB=2 ,AC=b,且關(guān)于x的方程x2﹣4x+b=0有兩個(gè)相等的實(shí)數(shù)根,則AC邊上的中線長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在梯形ABCD中,AD∥BC,AB=AD,∠BAD的平分線AE交BC于點(diǎn)E,連接DE.
(1)求證:四邊形ABED是菱形;
(2)若∠ABC=60°,CE=2BE,試判斷△CDE的形狀,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com