【題目】在直角△ABC中,∠ACB=90°,∠B=30°,CD⊥AB于D,CE是△ABC的角平分線.
(1)求∠DCE的度數(shù).
(2)若∠CEF=135°,求證:EF∥BC.
【答案】
(1)解:∵∠B=30°,CD⊥AB于D,
∴∠DCB=90°﹣∠B=60°.
∵CE平分∠ACB,∠ACB=90°,
∴∠ECB= ∠ACB=45°,
∴∠DCE=∠DCB﹣∠ECB=60°﹣45°=15°
(2)解:∵∠CEF=135°,∠ECB= ∠ACB=45°,
∴∠CEF+∠ECB=180°,
∴EF∥BC
【解析】(1)由圖示知∠DCE=∠DCB﹣∠ECB,由∠B=30°,CD⊥AB于D,利用內(nèi)角和定理,求出∠DCB的度數(shù),又由角平分線定義得∠ECB= ∠ACB,則∠DCE的度數(shù)可求;(2)根據(jù)∠CEF+∠ECB=180°,由同旁內(nèi)角互補,兩直線平行可以證明EF∥BC.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以直角三角形a、b、c為邊,向外作等邊三角形,半圓,等腰直角三角形和正方形,上述四種情況的面積關(guān)系滿足S1+S2=S3圖形個數(shù)有( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列計算正確的是( )
A. x(x2-x-1)=x3-x-1
B. ab(a+b)=a2+b2
C. 3x(x2-2x-1)=3x3-6x2-3x
D. -2x(x2-x-1)=-2x3-2x2+2x
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,如果∠1=40°,∠2=100°,那么∠3的同位角等于 度,∠3的內(nèi)錯角等于 度,∠3的同旁內(nèi)角等于 度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】觀察下列各式:
=1+﹣=1
=1+﹣=1
=1+﹣=1
請你根據(jù)上面三個等式提供的信息,猜想:
(1)=
(2)請你按照上面每個等式反映的規(guī)律,寫出用n(n為正整數(shù))表示的等式:
(3)利用上述規(guī)律計算:(仿照上式寫出過程)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將拋物線y=2(x+1)2﹣2的圖象先向左平移1個單位長度,再向上平移3個單位長度,則頂點坐標為( )
A.(﹣2,1)
B.(2,1)
C.(0,1)
D.(﹣2,﹣5)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】今年哥哥的年齡是妹妹年齡的2倍,4年前哥哥的年齡是妹妹年齡的3倍,若設(shè)妹妹今年x歲,可列方程為( ).
A. 2x+4=3(x-4) B. 2x=3(x-4) C. 2x-4=3(x-4) D. 2x+4=3x
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某水資源保護組織對邢臺某小區(qū)的居民進行節(jié)約水資源的問卷調(diào)查.某居民在問卷的選項代號上畫“√”,這個過程是收集數(shù)據(jù)中的( )
A. 確定調(diào)查范圍B. 匯總調(diào)查數(shù)據(jù)
C. 實施調(diào)查D. 明確調(diào)查問題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,O為坐標原點,四邊彤OACB是菱形,OB在x軸的正半軸上,sin∠AOB=,反比例函數(shù)在第一象限內(nèi)的圖象經(jīng)過點A,與BC交于點F,刪△AOF的面積等于( )
A. 10 B. 9 C. 8 D. 6
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com