【題目】如圖,已知△ABC中,AB=AC=10cm,BC=8cm,點(diǎn)D為AB的中點(diǎn).
(1)如果點(diǎn)P在線段BC上以3cm/s的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動(dòng).
①若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過1s后,△BPD與△CQP是否全等,請(qǐng)說明理由;
②若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為多少時(shí),能夠使△BPD與△CQP全等?
(2)若點(diǎn)Q以②中的運(yùn)動(dòng)速度從點(diǎn)C出發(fā),點(diǎn)P以原來的運(yùn)動(dòng)速度從點(diǎn)B同時(shí)出發(fā),都逆時(shí)針沿△ABC三邊運(yùn)動(dòng),求經(jīng)過多長(zhǎng)時(shí)間點(diǎn)P與點(diǎn)Q第一次在△ABC的哪條邊上相遇?
【答案】
(1)解:①∵t=1s,
∴BP=CQ=3×1=3cm,
∵AB=10cm,點(diǎn)D為AB的中點(diǎn),
∴BD=5cm.
又∵PC=BC﹣BP,BC=8cm,
∴PC=8﹣3=5cm,
∴PC=BD.
又∵AB=AC,
∴∠B=∠C,
在△BPD和△CQP中,
∴△BPD≌△CQP(SAS).
②∵vP≠vQ,
∴BP≠CQ,
若△BPD≌△CPQ,∠B=∠C,
則BP=PC=4cm,CQ=BD=5cm,
∴點(diǎn)P,點(diǎn)Q運(yùn)動(dòng)的時(shí)間 s,
∴ cm/s
(2)解:設(shè)經(jīng)過x秒后點(diǎn)P與點(diǎn)Q第一次相遇,
由題意,得 x=3x+2×10,
解得 .
∴點(diǎn)P共運(yùn)動(dòng)了 ×3=80cm.
△ABC周長(zhǎng)為:10+10+8=28cm,
若是運(yùn)動(dòng)了三圈即為:28×3=84cm,
∵84﹣80=4cm<AB的長(zhǎng)度,
∴點(diǎn)P、點(diǎn)Q在AB邊上相遇,
∴經(jīng)過 s點(diǎn)P與點(diǎn)Q第一次在邊AB上相遇
【解析】(1)①根據(jù)時(shí)間和速度分別求得兩個(gè)三角形中的邊的長(zhǎng),根據(jù)SAS判定兩個(gè)三角形全等.②根據(jù)全等三角形應(yīng)滿足的條件探求邊之間的關(guān)系,再根據(jù)路程=速度×?xí)r間公式,先求得點(diǎn)P運(yùn)動(dòng)的時(shí)間,再求得點(diǎn)Q的運(yùn)動(dòng)速度;(2)根據(jù)題意結(jié)合圖形分析發(fā)現(xiàn):由于點(diǎn)Q的速度快,且在點(diǎn)P的前邊,所以要想第一次相遇,則應(yīng)該比點(diǎn)P多走等腰三角形的兩個(gè)腰長(zhǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)學(xué)興趣小組活動(dòng)中,小明進(jìn)行數(shù)學(xué)探究活動(dòng),將邊長(zhǎng)為2的正方形ABCD與邊長(zhǎng)為2的正方形AEFG按圖1位置放置,AD與AE在同一直線上,AB與AG在同一直線上.
(1)小明發(fā)現(xiàn)DG⊥BE,請(qǐng)你幫他說明理由.
(2)如圖2,小明將正方形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)B恰好落在線段DG上時(shí),請(qǐng)你幫他求出此時(shí)BE的長(zhǎng).
(3)如圖3,小明將正方形ABCD繞點(diǎn)A繼續(xù)逆時(shí)針旋轉(zhuǎn),線段DG與線段BE將相交,交點(diǎn)為H,寫出△GHE與△BHD面積之和的最大值,并簡(jiǎn)要說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2﹣2x+m(m為常數(shù))的圖象與x軸的一個(gè)交點(diǎn)為(﹣1,0),則關(guān)于x的一元二次方程x2﹣2x+m=0的兩個(gè)實(shí)數(shù)根是( )
A.x1=1,x2=2
B.x1=1,x2=3
C.x1=﹣1,x2=2
D.x1=﹣1,x2=3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校在八年級(jí)(1)班學(xué)生中開展對(duì)于“我國(guó)國(guó)家公祭日”知曉情況的問卷調(diào)查.
問卷調(diào)查的結(jié)果分為A、B、C、D四類,其中A類表示“非常了解”;B類表示“比較了解”;C類表示“基本了解”;D類表示“不太了解”;班長(zhǎng)將本班同學(xué)的調(diào)查結(jié)果繪制成下列兩幅不完整的統(tǒng)計(jì)圖.
請(qǐng)根據(jù)上述信息解答下列問題:
(1)該班參與問卷調(diào)查的人數(shù)有 人;補(bǔ)全條形統(tǒng)計(jì)圖;
(2)求出C類人數(shù)占總調(diào)查人數(shù)的百分比及扇形統(tǒng)計(jì)圖中類所對(duì)應(yīng)扇形圓心角的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com