若a≠b,則方程
a
b
+
x
a
=
x
b
-
b
a
的解是x=
分析:此類方程的解只要用含a、b的代數(shù)式表示即可.
解答:解:去分母,得a2+bx=ax-b2
移項(xiàng),得ax-bx=a2+b2
合并同類項(xiàng),得(a-b)x=a2+b2
系數(shù)化為1,得x=
a2+b2
a-b
(a≠b).
點(diǎn)評(píng):解一元一次方程的步驟是:先去分母,再去括號(hào),最后移項(xiàng)合并,化系數(shù)為1,從而得到方程的解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

若x1,x2是關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)的兩個(gè)根,則方程的兩個(gè)根x1,x2和系數(shù)a,b,c有如下關(guān)系:x1+x2=-
b
a
,x1x2=
c
a
.我們把它們稱為根與系數(shù)關(guān)系定理.
如果設(shè)二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸的兩個(gè)交點(diǎn)為A(x1,0),B(x2,0).利用根與系數(shù)關(guān)系定理我們又可以得到A、B兩個(gè)交點(diǎn)間的距離為:
AB=|x1-x2|=
(x1+x2)2-4x1x2
=
(-
b
a
)
2
-
4c
a
=
b2-4ac
a2
=
b2-4ac
|a|

請(qǐng)你參考以上定理和結(jié)論,解答下列問題:
設(shè)二次函數(shù)y=ax2+bx+c(a>0)的圖象與x軸的兩個(gè)交點(diǎn)為A(x1,0),B(x2,0),拋物線的頂點(diǎn)為C,顯然△ABC為等腰三角形.
(1)當(dāng)△ABC為等腰直角三角形時(shí),求b2-4ac的值;
(2)當(dāng)△ABC為等邊三角形時(shí),b2-4ac=
 
;
(3)設(shè)拋物線y=x2+kx+1與x軸的兩個(gè)交點(diǎn)為A、B,頂點(diǎn)為C,且∠ACB=90°,試問如何平移此拋物線,才能使∠ACB=60°?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

我們規(guī)定,若x的一元一次方程ax=b的解為b-a,則稱該方程的定解方程,例如:3x=
9
2
的解為
9
2
-3=
3
2
,則該方程3x=
9
2
就是定解方程.
請(qǐng)根據(jù)上邊規(guī)定解答下列問題
(1)若x的一元一次方程2x=m是定解方程,則m=
 

(2)若x的一元一次方程2x=ab+a是定解方程,它的解為a,求a,b的值.
(3)若x的一元一次方程2x=mn+m和-2x=mn+n都是定解方程,求代數(shù)式-2(m+11)-{-4n-3[(mn+m)2-m]}-
1
2
[(mn+n)2-2n]
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•南沙區(qū)一模)若a,b是方程x2+2x-1=0的兩個(gè)實(shí)數(shù)根,則a+b+ab=
-3
-3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

下列命題是真命題的有( 。
①若a>b,則ac2>bc2;②內(nèi)錯(cuò)角相等;③
a+b
ab
=
a2+ab
a2b
;④分式方程一定有增根;⑤所有正方形都相似;⑥點(diǎn)C是線段AB的黃金分割點(diǎn)(AC>BC),若AC=2,則AB•BC=4.

查看答案和解析>>

同步練習(xí)冊(cè)答案