【題目】如圖,矩形紙片ABCD中,AB=4,將紙片折疊,使頂點B落在邊AD上的點為E,折痕的一端G點在BC上(BG<GC),另一端F落在矩形的邊上,BG=5.
(1)請你在備用圖中畫出滿足條件的圖形;
(2)求出AF的長.
【答案】(1)圖見解析;(2)AF的長為或3.
【解析】
(1)根據(jù)折疊的性質(zhì)和頂點B折疊后的落點可確定另一端F的位置,由此畫圖即可得;
(2)在圖1中,過點G 作于點M,先根據(jù)矩形的性質(zhì)、折疊的性質(zhì)得出,,,再利用勾股定理可得EM的長,從而可得AE的長,設(shè),然后在中,利用勾股定理即可得;在圖2中,過點G 作于點N,先根據(jù)線段的和差求出FN的長,再利用勾股定理求出EN的長,從而可得EF的長,然后在中,利用勾股定理即可得.
(1)根據(jù)折疊的性質(zhì)和頂點B折疊后的落點,可分以下兩種情況:
①當(dāng)另一端F落在矩形的邊AB上時,作圖結(jié)果如圖1所示:
②當(dāng)另一端F落在矩形的邊AD上時,作圖結(jié)果如圖2所示:
(2)①在圖1中,過點G 作于點M,則四邊形ABGM是矩形
,
由折疊的性質(zhì)得:,
在中,
四邊形ABCD是矩形
設(shè),則
在中,,即
解得
②在圖2中,過點G 作于點N,則四邊形ABGN是矩形
,
由折疊的性質(zhì)得:,,,
在中,
設(shè),則,
在中,,即
解得
綜上,AF的長為或3.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地農(nóng)民一直保持著冬種油菜的習(xí)慣,利用農(nóng)閑冬種一季油菜.該地農(nóng)業(yè)部門對2017年的油菜籽生產(chǎn)成本、市場價格、種植面積和產(chǎn)量等進行了調(diào)查統(tǒng)計,并繪制了如下的統(tǒng)計表與統(tǒng)計圖(如圖):
每畝生產(chǎn)成本 | 每畝產(chǎn)量 | 油菜籽市場價格 | 種植面積 |
110元 | 130千克 | 3元/千克 | 500 000畝 |
請根據(jù)以上信息解答下列問題:
(1)種植油菜每畝的種子成本是多少元?
(2)農(nóng)民冬種油菜每畝獲利多少元?
(3)2017年該地全縣農(nóng)民冬種油菜的總獲利是多少元?(結(jié)果用科學(xué)記數(shù)法表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】意大利著名數(shù)學(xué)家斐波那契在研究兔子繁殖問題時,發(fā)現(xiàn)有這樣一組數(shù):1,1,2,3,5,8,13,…,其中從第三個數(shù)起,每一個數(shù)都等于它前面兩個數(shù)的和.現(xiàn)以這組數(shù)中的各個數(shù)作為正方形的邊長值構(gòu)造正方形,再分別依次從左到右取2個、3個、4個、5個…正方形拼成如上長方形,若按此規(guī)律繼續(xù)作長方形,則序號為⑦的長方形周長是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與x軸交于點A,與y軸交于點C.拋物線經(jīng)過A,C兩點,且與x軸交于另一點B(點B在點A右側(cè)).
(1)求拋物線的解析式及點B坐標(biāo);
(2)若點M是線段BC上的一動點,過點M的直線EF平行y軸交x軸于點F,交拋物線于點E.求ME長的最大值;
(3)試探究當(dāng)ME取最大值時,在拋物線上、x軸下方是否存在點P,使以M,F(xiàn),B,P為頂點的四邊形是平行四邊形?若存在,請求出點P的坐標(biāo);若不存在,試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市中小學(xué)全面開展“陽光體育”活動,某校在大課間中開設(shè)了A(體操)、B(乒乓球)、C(毽球)、D(跳繩)四項活動.為了解學(xué)生最喜歡哪一項活動,隨機抽了部分學(xué)生進行調(diào)查,并將調(diào)查結(jié)果繪制成了如下兩幅不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖回答下列問題:
(1)這次被調(diào)查的學(xué)生共有 人;
(2)請將統(tǒng)計圖2補充完整;
(3)統(tǒng)計圖1中B項目對應(yīng)的扇形的圓心角是 度;
(4)已知該校共有學(xué)生2500人,根據(jù)調(diào)查結(jié)果估計該校喜歡體操的學(xué)生有 人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點,點M、N位于第一象限,其中M的坐標(biāo)為(m,5),點N的坐標(biāo)(n,8),且m≥n.
(1)若MN與坐標(biāo)軸平行,則MN= ;
(2)若m、n、t滿足,MA⊥x軸,垂足為A,NB⊥x軸,垂足為B.
①求四邊形MABN的面積;
②連接MN、OM、ON,若△MON的面積大于26而小于30,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小林準(zhǔn)備進行如下操作實驗;把一根長為40cm的鐵絲剪成兩段,并把每一段各圍成一個正方形.
(1)要使這兩個正方形的面積之和等于58cm2,小林該怎么剪?
(2)小峰對小林說:“這兩個正方形的面積之和不可能等于48cm2.”他的說法對嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的對角線AC,BD相交于點O,點E,F(xiàn)在BD上,BE=DF.
(1)求證:AE=CF;
(2)若AB=6,∠COD=60°,求矩形ABCD的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com