分析 (1)把15°化為45°-30°以后,再利用公式sin(α±β)=sinαcosβ±cosasinβ計算,即可求出sin15°的值;
(2)先根據(jù)銳角三角函數(shù)的定義求出BE的長,再根據(jù)AB=AE+BE即可得出結(jié)論.
解答 解:(1)sin15°=sin(45°-30°)=sin45°cos30°-cos45°sin30°=$\frac{\sqrt{2}}{2}$×$\frac{\sqrt{3}}{2}$-$\frac{\sqrt{2}}{2}$×$\frac{\sqrt{6}}{4}$=$\frac{\sqrt{6}}{4}$-$\frac{\sqrt{2}}{4}$.
=$\frac{\sqrt{6}-\sqrt{2}}{4}$;
(2)在Rt△BDE中,∵∠BED=90°,∠BDE=75°,DE=AC=5.7米,
∴BE=DE•tan∠BDE=DE•tan75°.
∵tan75°=tan(45°+30°)=$\frac{tan45°+tan30°}{1-tan45°tan30°}$=$\frac{1+\frac{\sqrt{3}}{3}}{1-1×\frac{\sqrt{3}}{3}}$=2+$\sqrt{3}$,
∴BE=5.7(2+$\sqrt{3}$)=5.7(2+1.7)=21.09
∴AB=AE+BE=1.5+21.09≈22.6(米).
答:鐵塔的高度約為22.6米.
點評 本題考查了:
(1)特殊角的三角函數(shù)值的應(yīng)用,屬于新題型,解題的關(guān)鍵是根據(jù)題目中所給信息結(jié)合特殊角的三角函數(shù)值來求解.
(2)解直角三角形的應(yīng)用-仰角俯角問題,先根據(jù)銳角三角函數(shù)的定義得出BE的長是解題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{2}$ | B. | 1 | C. | $\frac{1}{2}$ | D. | 2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 12 | B. | 24 | C. | 32 | D. | 48 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 68.77×109 | B. | 6.877×109 | C. | 6.877×1010 | D. | 6877×1010 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com