【題目】如圖1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°
(1)請判斷AB與CD的位置關(guān)系并說明理由;
(2)如圖2,在(1)的結(jié)論下,當(dāng)∠E=90°保持不變,移動直角頂點E,使∠MCE=∠ECD,當(dāng)直角頂點E點移動時,問∠BAE與∠MCD是否存在確定的數(shù)量關(guān)系?
(3)如圖3,在(1)的結(jié)論下,P為線段AC上一定點,點Q為直線CD上一動點,當(dāng)點Q在射線CD上運動時(點C除外)∠CPQ+∠CQP與∠BAC有何數(shù)量關(guān)系? (2、3小題只需選一題說明理由)

【答案】
(1)解:∵CE平分∠ACD,AE平分∠BAC,

∴∠BAC=2∠EAC,∠ACD=2∠ACE,

∵∠EAC+∠ACE=90°,

∴∠BAC+∠ACD=180°,

∴AB∥CD;


(2)∠BAE+ ∠MCD=90°;

過E作EF∥AB,

∵AB∥CD,

∴EF∥AB∥CD,

∴∠BAE=∠AEF,∠FEC=∠DCE,

∵∠E=90°,

∴∠BAE+∠ECD=90°,

∵∠MCE=∠ECD,

∴∠BAE+ ∠MCD=90°;


(3)∵AB∥CD,

∴∠BAC+∠ACD=180°,

∵∠QPC+∠PQC+∠PCQ=180°,

∴∠BAC=∠PQC+∠QPC.


【解析】(1)先根據(jù)CE平分∠ACD,AE平分∠BAC得出∠BAC=2∠EAC,∠ACD=2∠ACE,再由∠EAC+∠ACE=90°可知∠BAC+∠ACD=180,故可得出結(jié)論;(2)過E作EF∥AB,根據(jù)平行線的性質(zhì)可知EF∥AB∥CD,∠BAE=∠AEF,∠FEC=∠DCE,故∠BAE+∠ECD=90°,再由∠MCE=∠ECD即可得出結(jié)論;(3)根據(jù)AB∥CD可知∠BAC+∠ACD=180°,∠QPC+∠PQC+∠PCQ=180°,故∠BAC=∠PQC+∠QPC.
【考點精析】根據(jù)題目的已知條件,利用平行線的判定與性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握由角的相等或互補(數(shù)量關(guān)系)的條件,得到兩條直線平行(位置關(guān)系)這是平行線的判定;由平行線(位置關(guān)系)得到有關(guān)角相等或互補(數(shù)量關(guān)系)的結(jié)論是平行線的性質(zhì).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是一個圓柱形的餅干盒,在盒子外側(cè)下底面的點A處有甲、乙兩只螞蟻,它們都想要吃到上底面外側(cè)B′處的食物:甲螞蟻沿A→A′→B′的折線爬行,乙螞蟻沿圓柱的側(cè)面爬行:若∠AOB=∠A′O′B′=90°(AA′、BB′都與圓柱的中軸線OO′平行),圓柱的底面半徑是12cm,高為1cm,則:

(1)A′B′=cm,甲螞蟻要吃到食物需爬行的路程長l1=cm;
(2)乙螞蟻要吃到食物需爬行的最短路程長l2=cm(π取3);
(3)若兩只螞蟻同時出發(fā),且爬行速度相同,在乙螞蟻采取最佳策略的前提下,哪只螞蟻先到達食物處?請你通過計算或合理的估算說明理由.(參考數(shù)據(jù):π取3, ≈1.4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB∥DE,∠ABC=80°,∠CDE=140°,則∠C=(
A.20°
B.30°
C.40°
D.50°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某專營商場銷售一種品牌電腦,每臺電腦的進貨價是0.4萬元.圖中的直線l1表示該品牌電腦一天的銷售收入y1(萬元)與銷售量x(臺)的關(guān)系,已知商場每天的房租、水電、工資等固定支出為3萬元.

(1)直線l1對應(yīng)的函數(shù)表達式是 , 每臺電腦的銷售價是萬元;
(2)寫出商場一天的總成本y2(萬元)與銷售量x(臺)之間的函數(shù)表達式:
(3)在圖的直角坐標(biāo)系中畫出第(2)小題的圖象(標(biāo)上l2);
(4)通過計算說明:每天銷售量達到多少臺時,商場可以盈利.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下面推理過程: 如圖,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:

∵∠1=∠2(已知),
且∠1=∠CGD(),
∴∠2=∠CGD(等量代換).
∴CE∥BF().
∴∠=∠C().
又∵∠B=∠C(已知),
∴∠=∠B(等量代換).
∴AB∥CD().

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】三角形的兩邊長分別為47,第三邊長是方程x27x+12=0的解,則第三邊的長為( 。

A. 3B. 4C. 34D. 無法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】68°30′的補角為__________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列四邊形不屬于平行四邊形的是(

A.菱形B.矩形C.梯形D.正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用四舍五入法按要求把2.0503分別取近似數(shù),其中錯誤的是(

A. 2.1(精確到0.1) B. 2.05(精確到0.001)

C. 2.05(精確到百分位) D. 2.050(精確到千分位)

查看答案和解析>>

同步練習(xí)冊答案