【題目】如圖,正方形ABCD中,AB=12,點(diǎn)E在邊BC上,BE=EC,將△DCE沿DE對折至△DFE,延長EF交邊AB于點(diǎn)G,連接DG、BF,給出以下結(jié)論:①△DAG≌△DFG;②BG=2AG;③SDGF=120;④SBEF= .其中所有正確結(jié)論的個(gè)數(shù)是(
A.4
B.3
C.2
D.1

【答案】B
【解析】解:如圖,由折疊可知,DF=DC=DA,∠DFE=∠C=90°, ∴∠DFG=∠A=90°,
在Rt△ADG和Rt△FDG中,
,
∴Rt△ADG≌Rt△FDG,故①正確;
∵正方形邊長是12,
∴BE=EC=EF=6,
設(shè)AG=FG=x,則EG=x+6,BG=12﹣x,
由勾股定理得:EG2=BE2+BG2
即:(x+6)2=62+(12﹣x)2 ,
解得:x=4
∴AG=GF=4,BG=8,BG=2AG,故②正確;
BE=EF=6,△BEF是等腰三角形,易知△GED不是等腰三角形,故③錯(cuò)誤;
SGBE= ×6×8=24,SBEF= SGBE= ×24= ,故④正確.
綜上可知正確的結(jié)論的是3個(gè).
故選B.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解正方形的性質(zhì)的相關(guān)知識,掌握正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形,以及對翻折變換(折疊問題)的理解,了解折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應(yīng)點(diǎn)的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和角相等.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CD⊥AB于D,點(diǎn)F是BC上任意一點(diǎn),F(xiàn)E⊥AB于E,且∠1=∠2,∠3=80°.
(1)試證明∠2=∠DCB
(2)試證明DG∥BC;
(3)求∠BCA的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在正方形ABCD的外側(cè),作兩個(gè)等邊三角形ADE和DCF,連接AF,BE.

(1)請判斷:AF與BE的數(shù)量關(guān)系是 , 位置關(guān)系是
(2)如圖2,若將條件“兩個(gè)等邊三角形ADE和DCF”變?yōu)椤皟蓚(gè)等腰三角形ADE和DCF,且EA=ED=FD=FC”,第(1)問中的結(jié)論是否仍然成立?請作出判斷并給予說明;
(3)若三角形ADE和DCF為一般三角形,且AE=DF,ED=FC,第(1)問中的結(jié)論都能成立嗎?請直接寫出你的判斷.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】廣告設(shè)計(jì)人員進(jìn)行圖案設(shè)計(jì),經(jīng)常將一個(gè)基本圖案進(jìn)行軸對稱、平移和 等。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,⊙M經(jīng)過原點(diǎn)O(0,0),點(diǎn)A(,0)與點(diǎn)B(0,-),點(diǎn)D在劣弧上,連結(jié)BDx軸于點(diǎn)C,且∠COD=CBO.

(1)求⊙M的半徑;

(2)求證:BD平分∠ABO;

(3)在線段BD的延長線上找一點(diǎn)E,使得直線AE恰為⊙M的切線,求此時(shí)點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某港口P位于東西方向的海岸線上,“遠(yuǎn)航”號、“海天”號輪船同時(shí)離開港口,各自沿一固定方向航行,“遠(yuǎn)航”號每小時(shí)航行16nmile,“海天”號每小時(shí)航行12nmile,它們離開港口一個(gè)半小時(shí)后相距30nmile,且知道“遠(yuǎn)航”號沿東北方向航行,那么“海天”號航行的方向是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以下列線段為邊,能組成直角三角形的是(
A.6cm,12cm,14cm
B. cm,1cm, cm
C.1.5cm,2cm,2.5cm
D.2cm,3cm,5cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直角梯形ABCD中,AD∥BC,AB⊥BC,AD=4,BC=DC=5,點(diǎn)P在BC上移動,則當(dāng)PA+PD取最小值時(shí),BP長為( )

A.1
B.2
C.2.5
D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列計(jì)算正確的是(  )

A. a3+a3a6B. a6÷a3a2C. a23a8D. a2a3a5

查看答案和解析>>

同步練習(xí)冊答案