如圖,已知矩形ABCD,AB=數(shù)學公式,BC=3,在BC上取兩點E、F(E在F左邊),以EF為邊作等邊三角形PEF,使頂點P在AD上,PE、PF分別交AC于點G、H.
(1)求△PEF的邊長;
(2)在不添加輔助線的情況下,從圖中找出一個除△PEF外的等腰三角形,并說明理由;
(3)若△PEF的邊EF在線段BC上移動.試猜想:PH與BE有何數(shù)量關系?并證明你猜想的結論.

解:(1)過P作PQ⊥BC于Q(如圖1)
∵矩形ABCD,∴∠B=90°,即AB⊥BC,
又AD∥BC,∴PQ=AB=
∵△PEF是等邊三角形,∴∠PFQ=60°
在Rt△PQF中,∠FPQ=30°,
設PF=2x,QF=x,PQ=
根據(jù)勾股定理得:(2x)2=x2+,
解得:x=1,故PF=2,
∴△PEF的邊長為2.

(2)△APH是等腰三角形.理由如下:
在Rt△ADC中,AB=,BC=3,∴由勾股定理得AC=2,
∴CD=AC,∴∠CAD=30°
∵AD∥BC,∠PFE=60°,∴∠FPD=60°,
∴∠PHA=30°=∠CAD,∴PA=PH,
∴△APH是等腰三角形.

(3)PH-BE=1,理由如下:
作ER⊥AD于R(如圖2)
Rt△PER中,∠RPE=60°,
∴PR=PE=1,∴PH-BE=PA-BE=PR=1.
分析:(1)過P作PQ垂直于BC,垂足為Q,由ABCD為矩形,得到角B為直角,且AD平行于BC,得到PQ=AB,又三角形PEF為等邊三角形,根據(jù)“三線合一”得到∠FPQ為30°,在直角三角形FPQ中,設出QF為x,則PF=2x,由PQ的長,根據(jù)勾股定理列出關于x的方程,求出x的值,即可得到PF的長,即為等邊三角形的邊長;
(2)△APH為等腰三角形,理由是:由AB和BC,根據(jù)勾股定理求出AC的長,發(fā)現(xiàn)CD等于AC的一半,根據(jù)直角三角形中,一直角邊等于斜邊的一半,這條直角邊所對的角為30°,即∠PAH為30°,又根據(jù)矩形的對邊平行,得到內錯角∠DPF=∠PFE=60°,又∠DPF為△APH的外角,根據(jù)外角定理得到∠PHA=30°,然后根據(jù)等角對等邊得到AP=HP,故△APH為等腰三角形;
(3)PH-BE=1,理由是:過E作ER垂直于AD,如圖所示,根據(jù)矩形的對邊平行得到一對內錯角相等,可得∠APE=60°,在直角三角形EPR中,∠REP=30°,根據(jù)直角三角形中,30°角所對的直角邊等于斜邊的一半,由PE求出PR,由(2)中得到PA=PH,則PH-BE=PA-BE=PA-AR=PR,即可得到兩線段的關系.
點評:此題綜合考查了矩形的性質,等腰三角形的判別與性質、等邊三角形的性質及直角三角形的性質.學生作第三問時,應借助第二問的結論,結合圖形,多次利用數(shù)學中等量代換的方法解決問題,這就要求學生在作幾何題時注意合理運用各小題之間的聯(lián)系.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知矩形DEFG內接于Rt△ABC,D在AB上,E、F在BC上,G在AC上,∠BAC=90°,AB=6cm,AC=8cm,S矩形DEFG=
454
,則矩形的邊長DG=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知矩形ABCD中,AB=12cm,BC=6cm,點M沿AB方向從A向B以2cm/秒的速度移動,點N從D沿DA方向以1c精英家教網(wǎng)m/秒的速度移動,如果M、N兩點同時出發(fā),移動的時間為x秒(0≤x≤6).
(1)當x為何值時,△MAN為等腰直角三角形?
(2)當x為何值時,有△MAN∽△ABC?
(3)愛動腦筋的小紅同學在完成了以上聯(lián)系后,對該問題作了深入的研究,她認為:在M、N的移動過程中(N不與D、A重合,M不與A、B重合),以A、M、C、N為頂點的四邊形面積是一個常數(shù).她的這種想法對嗎?請說出理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知正三角形ABC的邊長AB是480毫米.一質點D從點B出發(fā),沿BA方向,以每秒鐘10毫米的速度向精英家教網(wǎng)點A運動.
(1)建立合適的直角坐標系,用運動時間t(秒)表示點D的坐標;
(2)過點D在三角形ABC的內部作一個矩形DEFG,其中EF在BC邊上,G在AC邊上.在圖中找出點D,使矩形DEFG是正方形(要求所表達的方式能體現(xiàn)出找點D的過程);
(3)過點D、B、C作平行四邊形,當t為何值時,由點C、B、D、F組成的平行四邊形的面積等于三角形ADC的面積,并求此時點F的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•寧德質檢)如圖,已知Rt△ABC,∠B=90°,AB=8,BC=6,把斜邊AC平均分成n段,以每段為對角線作邊與AB、BC平行的小矩形,則這些小矩形的面積和是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知矩形ABCD中AB:BC=3:1,點A、B在x軸上,直線y=mx+n(0<m<n<
1
2
),過點A、C交y軸于點E,S△AOE=
9
8
S矩形ABCD,拋物線y=ax2+bx+c過點A、B,且頂點G在直線y=mx+n上,拋物線與y軸交于點F.
(1)點A的坐標為
(-3n,0)
(-3n,0)
;B的坐標
(-n,0)
(-n,0)
(用n表示);
(2)abc=
-
4
9
-
4
9

查看答案和解析>>

同步練習冊答案