【題目】如圖,正方形ABCD的對角線AC,BD相交于點O,延長CB至點F,使CF=CA,連接AF,∠ACF的平分線分別交AF,AB,BD于點E,N,M,連接EO.
(1)已知BD=,求正方形ABCD的邊長;
(2)猜想線段EM與CN的數(shù)量關(guān)系并加以證明.
【答案】(1)1(2)CN=CM
【解析】試題分析:(1)利用正方形的性質(zhì)和勾股定理計算即可;
(2)先判斷出EO為△AFC的中位線,再由EO∥BC得出,進而利用直角三角形得出CM=EM,再判斷出△CBN∽△COM得出比例式,進而得出CN=CM,即可得出結(jié)論.
試題解析:(1)∵四邊形ABCD是正方形,
∴△ABD是等腰直角三角形,
∴2AB2=BD2,
∵BD=,
∴AB=1,
∴正方形ABCD的邊長為1;
(2)CN=2CM
理由:∵四邊形ABCD是正方形,
∴AC⊥BD,OA=OC
∵CF=CA,AF是∠ACF的平分線,
∴CE⊥AF,AE=FE
∴EO為△AFC的中位線
∴EO∥BC
∴
∴在Rt△AEN中,OA=OC
∴EO=OC=AC,
∴CM=EM
∵AF平分∠ACF,
∴∠OCM=∠BCN,
∵∠NBC=∠COM=90°,
∴△CBN∽△COM,
∴,
∴CN=CM.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2(a>0)的圖象一定經(jīng)過( )
A.第一、二象限
B.第二、三象限
C.第二、四象限
D.第三、四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD,BD分別平分∠CAB和∠CBA,相交于點D.
(1)如圖1,過點D作DE∥AC,DF∥BC分別交AB于點E、F. ①若∠EDF=80°,則∠C為多少?
②若∠EDF=x°,證明:∠ADB=(90+ )°.
(2)如圖2,若DE,BE分別平分∠ADB和∠ABD,且EF,BF分別平分∠BED和∠EBD,若∠BFE的度數(shù)是整數(shù),求∠BFE至少是多少度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,點O在對角線AC上,以OA的長為半徑的圓O與AD、AC分別交于點E、F,且∠ACB=∠DCE.
(1)判斷直線CE與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若tan∠ACB=,BC=2,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】方程3x2﹣4x﹣1=0的二次項系數(shù)和一次項系數(shù)分別為( )
A.3和4
B.3和﹣4
C.3和﹣1
D.3和1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標系中,△ABC的三個頂點坐標分別為A(0,4),B(2,4),C(3,﹣1).
(1)試在平面直角坐標系中,標出A、B、C三點;
(2)求△ABC的面積.
(3)若△A1B1C1與△ABC關(guān)于x軸對稱,寫出A1、B1、C1的坐標,并畫出△A1B1C1 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下列幾組數(shù)中,能作為直角三角形三邊的是( )
A.0.9,1.6,2.5
B. , ,
C.32 , 42 , 52
D. , ,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com