【題目】如圖,在矩形ABCD中,點O在對角線AC上,以OA的長為半徑的圓OADAC分別交于點E、F,且ACB=DCE

1)判斷直線CEO的位置關(guān)系,并證明你的結(jié)論;

2)若tanACB=,BC=2,求O的半徑.

【答案】(1)直線CEO相切(2

【解析】試題分析:(1)連接OE.欲證直線CEO相切,只需證明CEO=90°,即OECE即可;

2)在直角三角形ABC中,根據(jù)三角函數(shù)的定義可以求得AB=,然后根據(jù)勾股定理求得AC=,同理知DE=1;在RtCOE中,利用勾股定理可以求得CO2=OE2+CE2,即(-r) 2=r2+3,從而易得r的值;

試題解析:(1)直線CEO相切

理由如下:

四邊形ABCD是矩形,

BCAD,ACB=DAC

∵∠ACB=DCE,

∴∠DAC=DCE;

連接OE,則DAC=AEO=DCE

∵∠DCE+DEC=90°

∴∠AEO+DEC=90°

∴∠OEC=90°,即OECE

OEO的半徑,

直線CEO相切.

2tanACB=,BC=2

AB=BCtanACB=

AC=;

∵∠ACB=DCE,

tanDCE=tanACB=,

DE=DCtanDCE=1

RtCDE中,CE=

連接OE,設O的半徑為r,則在RtCOE中,CO2=OE2+CE2,即(-r) 2=r2+3

解得:r=

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系內(nèi),點P(﹣2,3)關(guān)于原點的對稱點Q的坐標為( )
A.(2,﹣3)
B.(2,3)
C.(3,﹣2)
D.(﹣2,﹣3)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】超市店慶促銷,某種書包原價每個x元,第一次降價打“八折”,第二次降價每個又減10元,經(jīng)兩次降價后售價為90元,則得到方程( )
A.0.8x﹣10=90
B.0.08x﹣10=90
C.90﹣0.8x=10
D.x﹣0.8x﹣10=90

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB、CD交于點O,∠1=∠2,∠3:∠1=8:1,求∠4的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的對角線AC,BD相交于點O,延長CB至點F,使CF=CA,連接AF,ACF的平分線分別交AF,ABBD于點E,NM,連接EO

1)已知BD=,求正方形ABCD的邊長;

2)猜想線段EMCN的數(shù)量關(guān)系并加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)圖象經(jīng)過點A(﹣3,0)、B(1,0)、C(0,﹣3),求此二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點P是BC中點,兩邊PE、PF分別交AB、AC于點E、F,給出以下四個結(jié)論: ①AE=CF;
②△EPF是等腰直角三角形;
③S四邊形AEPF= SABC
④當∠EPF在△ABC內(nèi)繞頂點P旋轉(zhuǎn)時(點E不與A、B重合) BE+CF=EF.
上述結(jié)論中始終正確的有(

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】實踐探究,解決問題
如圖1,△ABC中,AD為BC邊上的中線,則SABD=SACD

(1)在圖2中,E、F分別為矩形ABCD的邊AD、BC的中點,且AB=4,AD=8,則S陰影=;

(2)在圖3中,E、F分別為平行四邊形ABCD的邊AD、BC的中點,則S陰影和S平行四邊形ABCD之間滿足的關(guān)系式為;

(3)在圖4中,E、F分別為任意四邊形ABCD的邊AD、BC的中點,則S陰影和S四邊形ABCD之間還滿足(2)中的關(guān)系式嗎?若滿足,請予以證明,若不滿足,說明理由.
解決問題:

(4)在圖5中,E、G、F、H分別為任意四邊形ABCD的邊AD、AB、BC、CD的中點,并且圖中陰影部分的面積為20平方米,求圖中四個小三角形的面積和(即S1+S2+S3+S4的值).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知M,N表示單項式,且3x(M-5x)=6x2y3+N,則(  )

A. M=2xy3,N=-15x B. M=3xy3,N=-15x2

C. M=2xy3,N=-15x2 D. M=2xy3,N=15x2

查看答案和解析>>

同步練習冊答案