【題目】如圖,一次函數(shù)的圖像與軸、軸交于、兩點(diǎn),是軸正半軸上的一個(gè)動(dòng)點(diǎn),連接,將沿翻折,點(diǎn)恰好落在上,則點(diǎn)的坐標(biāo)為______.
【答案】(,0)或(24,0)
【解析】
分兩種情況討論:當(dāng)點(diǎn)P在OA上時(shí),由O與C關(guān)于PB對(duì)稱(chēng),可得OP=CP,BC=OB=8;當(dāng)點(diǎn)P在AO延長(zhǎng)線上時(shí),由O與C關(guān)于PB對(duì)稱(chēng),可得OP=CP,BC=OB=8,分別依據(jù)勾股定理得到方程,解方程即可得到點(diǎn)P的坐標(biāo).
解:設(shè)點(diǎn)O關(guān)于直線PB的對(duì)稱(chēng)點(diǎn)是C.
∵一次函數(shù)的圖象與x軸、y軸交于A、B兩點(diǎn),
∴AO=6,BO=8,AB=10.
分兩種情況:
①當(dāng)點(diǎn)P在OA上時(shí),
由折疊的性質(zhì),可得OP=CP,BC=OB=8,∠BCP=∠BOP=90°.
設(shè)OP=CP=x,則AP=6x,AC=108=2,
在Rt△ACP中,由勾股定理可得:x2+22=(6x)2,
解得x=,
∴P(,0);
②當(dāng)點(diǎn)P在AO延長(zhǎng)線上時(shí),
由折疊的性質(zhì),可得OP=CP,BC=OB=8,∠C=∠BOP=90°.
設(shè)OP=CP=x,則AP=6+x,AC=10+8=18,
在Rt△ACP中,由勾股定理可得:x2+182=(6+x)2,
解得x=24,
∴P(24,0).
故答案為:(,0)或(24,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,分別以的斜邊,直角邊為邊向外作等邊和,為的中點(diǎn),,相交于點(diǎn).若∠BAC=30°,下列結(jié)論:①;②四邊形為平行四邊形;③;④.其中正確結(jié)論的序號(hào)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著科技的進(jìn)步和網(wǎng)絡(luò)資源的豐富,在線學(xué)習(xí)已成為更多人的自主學(xué)習(xí)選擇.某校計(jì)劃為學(xué)生提供以下四類(lèi)在線學(xué)習(xí)方式:在線閱讀、在線聽(tīng)課、在線答題和在線討論.為了解學(xué)生需求,該校隨機(jī)對(duì)本校部分學(xué)生進(jìn)行了“你對(duì)哪類(lèi)在線學(xué)習(xí)方式最感興趣”的調(diào)查,并根據(jù)調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.
根據(jù)圖中信息,解答下列問(wèn)題:
(1)求本次調(diào)查的學(xué)生總?cè)藬?shù),并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)求扇形統(tǒng)計(jì)圖中“在線討論”對(duì)應(yīng)的扇形圓心角的度數(shù);
(3)該校共有學(xué)生人,請(qǐng)你估計(jì)該校對(duì)在線閱讀最感興趣的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算
(1);
(2);
(3)2x3y(-2xy)+(-2x2y)2;
(4)(2a+b)(b-2a)-(a-3b)2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小玲和弟弟小東分別從家和圖書(shū)館同時(shí)出發(fā),沿同一條路相向而行,小玲開(kāi)始跑步,中途改為步行,到達(dá)圖書(shū)館恰好用時(shí).小東騎自行車(chē)以的速度直接回家,兩人離家的路程與各自離開(kāi)出發(fā)地的時(shí)間之間的函數(shù)圖象如圖所示,下列說(shuō)法正確的有幾個(gè).( )
①家與圖書(shū)館之間的路程為;
②小玲步行的速度為;
③兩人出發(fā)以后8分鐘相遇;
④兩人出發(fā)以后,、時(shí)相距.
A.1B.2
C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,直線AB∥DC,點(diǎn)P為平面上一點(diǎn),連接AP與CP.
(1)如圖1,點(diǎn)P在直線AB、CD之間,當(dāng)∠BAP=60°,∠DCP=20°時(shí),求∠APC.
(2)如圖2,點(diǎn)P在直線AB、CD之間,∠BAP與∠DCP的角平分線相交于點(diǎn)K,寫(xiě)出∠AKC與∠APC之間的數(shù)量關(guān)系,并說(shuō)明理由.
(3)如圖3,點(diǎn)P落在CD外,∠BAP與∠DCP的角平分線相交于點(diǎn)K,∠AKC與∠APC有何數(shù)量關(guān)系?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O為銳角△ABC的外接圓,半徑為5.
(1)用尺規(guī)作圖作出∠BAC的平分線,并標(biāo)出它與劣弧BC的交點(diǎn)E(保留作圖痕跡,不寫(xiě)作法);
(2)若(1)中的點(diǎn)E到弦BC的距離為3,求弦CE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,O,D分別為AB,BC上的點(diǎn),經(jīng)過(guò)A,D兩點(diǎn)的⊙O分別交AB,AC于點(diǎn)E,F(xiàn),且D為弧EF的中點(diǎn).
(1)求證:BC與⊙O相切;
(2)當(dāng)⊙O的半徑r=2,∠CAD=30°時(shí),求劣弧AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,PA是⊙O的切線,點(diǎn)C在⊙O上,CB∥PO.
(1)判斷PC與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若AB=6,CB=4,求PC的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com