10、如下圖所示,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于點(diǎn)E,AD⊥CE于點(diǎn)D.DE=6cm,AD=9cm,則BE的長(zhǎng)是(  )
分析:本題可通過(guò)全等三角形來(lái)求BE的長(zhǎng).△BEC和△CDA中,已知了一組直角,∠CBE和∠ACD同為∠BCE的余角,AC=BC,可據(jù)此判定兩三角形全等;那么可得出的條件為CE=AD,BE=CD,因此只需求出CD的長(zhǎng)即可.而CD的長(zhǎng)可根據(jù)CE即AD的長(zhǎng)和DE的長(zhǎng)得出,由此可得解.
解答:解:∵∠ACB=90°,BE⊥CE,
∴∠BCE+∠ACD=90°,∠BCE+∠CBE=90°;
∴∠ACD=∠CBE,又AC=BC,
∴△ACD≌△CBE;
∴EC=AD,BE=DC;
∵DE=6cm,AD=9cm,則BE的長(zhǎng)是3cm.
故選C.
點(diǎn)評(píng):三角形全等的判定是中考的熱點(diǎn),一般以考查三角形全等的方法為主,判定兩個(gè)三角形全等,先根據(jù)已知條件或求證的結(jié)論確定三角形,然后再根據(jù)三角形全等的判定方法,看缺什么條件,再去證什么條件.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)心理學(xué)家研究發(fā)現(xiàn),一般情況下,一節(jié)課40分鐘中,學(xué)生的注意力隨教師講課的變化而變化.開始上課時(shí),學(xué)生的注意力逐步增強(qiáng),中間有一段時(shí)間學(xué)生的注意力保持較為理想的穩(wěn)定狀態(tài),隨后學(xué)生的注意力開始分散.經(jīng)過(guò)實(shí)驗(yàn)分析可知,學(xué)生的注意力指標(biāo)數(shù)y隨時(shí)間x(分鐘)的變化規(guī)律如下圖所示(其中AB、BC分別為線段,CD為雙曲線的一部分):
(1)開始上課后第五分鐘時(shí)與第三十分鐘時(shí)相比較,何時(shí)學(xué)生的注意力更集中?
(2)一道數(shù)學(xué)競(jìng)賽題,需要講19分鐘,為了效果較好,要求學(xué)生的注意力指標(biāo)數(shù)最低達(dá)到36,那么經(jīng)過(guò)適當(dāng)安排,老師能否在學(xué)生注意力達(dá)到所需的狀態(tài)下講解完這道題目?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如下圖所示,在△ABC中,∠A=40°,∠B=90°,AC的垂直平分線MN分別與AB、AC交于點(diǎn)D、E,求∠BCD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

11、證明:如下圖所示,在四邊形ABCD中,AB+BD≤AC+CD,求證:AB<AC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如下圖所示,在△ABC中,AB=AC,BC=6,點(diǎn)E、F是中線AD上的兩點(diǎn),且AD=4,則圖中陰影部分的面積為( 。
A、6B、12C、24D、3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如下圖所示,在等邊△ABC中,AD⊥BC,BD=3,則AB=
6
6

查看答案和解析>>

同步練習(xí)冊(cè)答案