如圖,已知直徑為OA的⊙P與x軸交于O、A兩點(diǎn),點(diǎn)B、C把三等分,連接PC并延長(zhǎng)PC交y軸于點(diǎn)D(0,3).
(1)求證:△POD≌△ABO;
(3)若直線l:y=kx+b經(jīng)過(guò)圓心P和D,求直線l的解析式.

【答案】分析:(1)首先連接PB,由直徑為OA的⊙P與x軸交于O、A兩點(diǎn),點(diǎn)B、C把三等分,可求得∠APB=∠DPO=60°,∠ABO=∠POD=90°,即可得△PAB是等邊三角形,可得AB=OP,然后由ASA,即可判定:△POD≌△ABO;
(2)易求得∠PDO=30°,由OP=OD•tan30°,即可求得點(diǎn)P的坐標(biāo),然后利用待定系數(shù)法,即可求得直線l的解析式.
解答:(1)證明:連接PB,
∵直徑為OA的⊙P與x軸交于O、A兩點(diǎn),點(diǎn)B、C把三等分,
∴∠APB=∠DPO=×180°=60°,∠ABO=∠POD=90°,
∵PA=PB,
∴△PAB是等邊三角形,
∴AB=PA,∠BAO=60°,
∴AB=OP,∠BAO=∠OPD,
在△POD和△ABO中,

∴△POD≌△ABO(ASA);

(2)解:由(1)得△POD≌△ABO,
∴∠PDO=∠AOB,
∵∠AOB=∠APB=×60°=30°,
∴∠PDO=30°,
∴OP=OD•tan30°=3×=
∴點(diǎn)P的坐標(biāo)為:(-,0)

解得:,
∴直線l的解析式為:y=x+3.
點(diǎn)評(píng):此題考查了圓周角定理、全等三角形的判定與性質(zhì)、直角三角形的性質(zhì)、等邊三角形的判定與性質(zhì)以及待定系數(shù)法求一次函數(shù)的解析式.此題綜合性較強(qiáng),難度適中,注意準(zhǔn)確作出輔助線,注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•涼山州)如圖,已知直徑為OA的⊙P與x軸交于O、A兩點(diǎn),點(diǎn)B、C把
OA
三等分,連接PC并延長(zhǎng)PC交y軸于點(diǎn)D(0,3).
(1)求證:△POD≌△ABO;
(3)若直線l:y=kx+b經(jīng)過(guò)圓心P和D,求直線l的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:四川省中考真題 題型:解答題

如圖,已知直徑為OA的P與x軸交于O、A兩點(diǎn),點(diǎn)B、C把三等分,連接PC并延長(zhǎng)PC交y軸于點(diǎn)D(0,3).
(1)求證:△POD△ABO;
(2)若直線l:y=kx+b經(jīng)過(guò)圓心P和D,求直線l的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年初中畢業(yè)升學(xué)考試(四川涼山卷)數(shù)學(xué)(帶解析) 題型:解答題

如圖,已知直徑為OA的⊙P與x軸交于O、A兩點(diǎn),點(diǎn)B、C把三等分,連接PC并延長(zhǎng)PC交y軸于點(diǎn)D(0,3).
求證:(1)△POD≌△ABO;
(2)若直線l:y=kx+b經(jīng)過(guò)圓心P和D,求直線l的解析式

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年初中畢業(yè)升學(xué)考試(四川涼山卷)數(shù)學(xué)(解析版) 題型:解答題

如圖,已知直徑為OA的⊙P與x軸交于O、A兩點(diǎn),點(diǎn)B、C把三等分,連接PC并延長(zhǎng)PC交y軸于點(diǎn)D(0,3).

求證:(1)△POD≌△ABO;

(2)若直線l:y=kx+b經(jīng)過(guò)圓心P和D,求直線l的解析式

 

查看答案和解析>>

同步練習(xí)冊(cè)答案