【題目】如圖1是某商場從一樓到二樓的自動扶梯,圖2是側面示意圖,MN是二樓樓頂,MN∥PQ,點C在MN上,且位于自動扶梯頂端B點的正上方,BC⊥MN.測得AB=10米,在自動扶梯底端A處測得點C的仰角為50°,點B的仰角為30°,求二樓的層高BC(結果保留根號)
(參考數(shù)據(jù):sin50°=0.77,cos50°=0.64,tan50°=1.20)
科目:初中數(shù)學 來源: 題型:
【題目】已知在Rt△ABC中,∠BAC=90°,CD為∠ACB的平分線,將∠ACB沿CD所在的直線對折,使點B落在點B′處,連結AB',BB',延長CD交BB'于點E,設∠ABC=2α(0°<α<45°).
(1)如圖1,若AB=AC,求證:CD=2BE;
(2)如圖2,若AB≠AC,試求CD與BE的數(shù)量關系(用含α的式子表示);
(3)如圖3,將(2)中的線段BC繞點C逆時針旋轉角(α+45°),得到線段FC,連結EF交BC于點O,設△COE的面積為S1,△COF的面積為S2,求(用含α的式子表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學開展了“手機伴我健康行”主題活動.他們隨機抽取部分學生進行“手機使用目的”和“每周使用手機時間”的問卷調查,并繪制成如圖①②的統(tǒng)計圖。已知“查資料”人人數(shù)是40人。
請你根據(jù)以上信息解答以下問題
(1)在扇形統(tǒng)計圖中,“玩游戲”對應的圓心角度數(shù)是_______________。
(2)補全條形統(tǒng)計圖
(3)該校共有學生1200人,估計每周使用手機時間在2小時以上(不含2小時)的人數(shù)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知拋物線的頂點為A(﹣1,4),且經(jīng)過點B(﹣2,3),與x軸分別交于C、D兩點(點C在點D的左側).
(1)求該拋物線對應的函數(shù)表達式;
(2)如圖1,點M是拋物線上的一個動點,且在直線OB的上方,過點M作x軸的平行線與直線OB交于點N,連接OM.
①求MN的最大值;
②當△OMN為直角三角形時,直接寫出點M的坐標;
(3)如圖2,過點A的直線交x軸于點E,且AE∥y軸,點P是拋物線上A、D之間的一個動點,直線PC、PD與AE分別交于F、G兩點.當點P運動時,EF+EG的和是否為定值?若是,試求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4,E為AB的中點,將△ADE沿直線DE折疊后,點A落在點F處,DF交對角線AC于G,則FG的長是________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,拋物線(m>0)與x軸交于A,B兩點,點B在點A的右側,頂點為C,拋物線與y軸交于點D,直線CA交y軸于E,且.
(1)求點A,點B的坐標;
(2)將△BCO繞點C逆時針旋轉一定角度后,點B與點A重合,點O恰好落在y軸上,
①求直線CE的解析式;
②求拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,點E,F是對角線BD上的兩點,且BE=DF.
(1)如果四邊形AECF是平行四邊形,求證:四邊形ABCD也是平行四邊形;
(2)如果四邊形AECF是菱形,求證:四邊形ABCD也是菱形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點,在軸上任取一點,連接,作的垂直平分線,過點作軸的垂線,與交于點.設點的坐標為.
(Ⅰ)當的坐標取時,點的坐標為________;
(Ⅱ)求,滿足的關系式;
(Ⅲ)是否存在點,使得恰為等邊三角形?若存在,求點的坐標;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com