【題目】(Ⅰ)如圖1,在等邊中,點(diǎn)上的任意一點(diǎn)(不含端點(diǎn), ),連結(jié),以為邊作等邊,并連結(jié)求證:

(Ⅱ)【類(lèi)比探究】

如圖2,在等邊中,若點(diǎn)延長(zhǎng)線上的任意一點(diǎn)(不含端點(diǎn)),其它條件不變,則是否還成立?若成立,請(qǐng)說(shuō)明理由;若不成立,請(qǐng)寫(xiě)出, , 三者間的數(shù)量關(guān)系,并給予證明.

(Ⅲ)【拓展延伸】

如圖3,在等腰中, ,點(diǎn)上的任意一點(diǎn)(不含端點(diǎn)),連結(jié),以為邊作等腰,使,試探究的數(shù)量關(guān)系,并說(shuō)明理由.

【答案】證明見(jiàn)解析(Ⅱ)結(jié)論不成立

【解析】試題分析:通過(guò)證明 ,根據(jù)全等三角形的性質(zhì)可得 ,從而證得;

(Ⅱ)結(jié)論不成立,通過(guò)證明 ,根據(jù)全等三角形的性質(zhì)可得, ;

設(shè),的外角可得,從而可得 ,的外角,可得 從而有,繼而推得 .

試題解析:, 都是等邊三角形,

, , ,

,

中,

,

,

;

(Ⅱ)結(jié)論不成立,

理由: 都是等邊三角形,

, ,

,

中, ,

,

,

,即 ;

理由:

設(shè),

,

的外角

,

,

,

的外角,

,

,

,即 .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正方形ABCD的邊長(zhǎng)為3E、F分別是ABBC邊上的點(diǎn),且∠EDF=45°,將△DAE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°,得到△DCM.若AE=1,則FM的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)DABCAB邊上,且∠ACD=A

1)作∠BDC的平分線DE,交BC于點(diǎn)E(用尺規(guī)作圖法,保留作圖痕跡,不要求寫(xiě)作法);

2)在(1)的條件下,判斷直線DE與直線AC的位置關(guān)系(不要求證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,正三角形OAB的頂點(diǎn)B的坐標(biāo)為(2,0),點(diǎn)A在第一象限內(nèi),將△OAB沿直線OA的方向平移至△O′A′B′的位置,此時(shí)點(diǎn)A′的橫坐標(biāo)為3,則點(diǎn)B′的坐標(biāo)為(
A.(4,2
B.(3,3
C.(4,3
D.(3,2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】周末小明和同學(xué)們?nèi)ァ熬G博園”的楓湖坐船,觀賞風(fēng)景;如圖,小明正在A處的小船上,B處小船上的游客發(fā)現(xiàn)點(diǎn)A在點(diǎn)B的正西方向上,C處小船上的游客發(fā)現(xiàn)點(diǎn)A在點(diǎn)C的南偏東30°方向上,已知點(diǎn)C在點(diǎn)B的北偏西60°方向上,且B、C兩地相距120米.

(1)求出此時(shí)點(diǎn)A到點(diǎn)C的距離;
(2)若小明從A處沿AC方向向C駛?cè)ィ?dāng)?shù)竭_(dá)點(diǎn)A′時(shí),測(cè)得點(diǎn)B在A′的南偏東75°的方向上,求此時(shí)小明所乘坐的小船走的距離.(注:結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀與理解:

三角形中一邊中點(diǎn)與這邊所對(duì)頂點(diǎn)的線段稱為三角形的中線。

三角形的中線的性質(zhì):三角形的中線等分三角形的面積。

即如圖1,AD是中BC邊上的中線,則,

理由:,

即:等底同高的三角形面積相等。

操作與探索:

在如圖2至圖4中,的面積為a。

(1)如圖2,延長(zhǎng)的邊BC到點(diǎn)D,使CD=BC,連接DA,若的面積為,則(用含a的代數(shù)式表示);

(2)如圖3,延長(zhǎng)的邊BC到點(diǎn)D,延長(zhǎng)邊CA到點(diǎn)E,使CD=BC,AE=CA,連接DE,若的面積為,則_________(用含a的代數(shù)式表示);

(3)在圖3的基礎(chǔ)上延長(zhǎng)AB到點(diǎn)F,使BF=AB,連接FD,F(xiàn)E,得到(如圖4),若陰影部分的面積為,則________(用含a的代數(shù)式表示)

(4)拓展與應(yīng)用:

如圖5,已知四邊形ABCD的面積是a;E,F,G,H分別是AB,BC,CD的中點(diǎn),求圖中陰影部分的面積?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)如圖1,ACBDCE均為等邊三角形,點(diǎn)A,DE在同一直線上,連接BE,則AEB的度數(shù)為__________.

(2)如圖2,ACBDCE均為等腰直角三角形,ACB=DCE=90°,點(diǎn)A,D,E在同一直線上,CMDCEDE邊上的高,連接BE.求AEB的度數(shù)及線段CM,AE,BE之間的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】每年的3月22日為聯(lián)合國(guó)確定的“世界水日”,某社區(qū)為了宣傳節(jié)約用水,從本社區(qū)1000戶家庭中隨機(jī)抽取部分家庭,調(diào)查他們每月的用水量,并將調(diào)查的結(jié)果繪制成如下兩幅尚不完整的統(tǒng)計(jì)圖(每組數(shù)據(jù)包括右端點(diǎn)但不包括左端點(diǎn)),請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答下列問(wèn)題:
(1)此次抽樣調(diào)查的樣本容量是;
(2)補(bǔ)全頻數(shù)分布直方圖,求扇形圖中“6噸﹣﹣9噸”部分的圓心角的度數(shù);
(3)如果自來(lái)水公司將基本月用水量定為每戶每月12噸,不超過(guò)基本月用水量的部分享受基本價(jià)格,超出基本月用水量的部分實(shí)行加價(jià)收費(fèi),那么該社會(huì)用戶中約有多少戶家庭能夠全部享受基本價(jià)格?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】神奇的數(shù)學(xué)世界是不是只有鍛煉思維的數(shù)字游戲?每天都在面對(duì)繁雜的數(shù)字計(jì)算?答案當(dāng)然是否定的,曼妙的數(shù)學(xué)暢游在迷人的數(shù)字和豐富多彩的圖形之間,將數(shù)與形巧妙地融匯在一起,不可分割.我們都知道,實(shí)數(shù)與數(shù)軸上的點(diǎn)一一對(duì)應(yīng),數(shù)軸上的線段可以由端點(diǎn)所對(duì)應(yīng)的實(shí)數(shù)確定,這是一維的數(shù)與形;增加到兩條數(shù)軸,可以形成平面直角坐標(biāo)系,這樣有序數(shù)對(duì)與平面內(nèi)的點(diǎn)一一對(duì)應(yīng),平面內(nèi)的多邊形及其內(nèi)容可以由多邊形的邊上所有點(diǎn)的坐標(biāo)所確定,這是二維的數(shù)與形.而在平面直角坐標(biāo)系中的圖形更是神秘,在平面內(nèi)任意畫(huà)一條(或多條)曲線(或直線),它(們)把平面分割成的部分都稱為區(qū)域,特別地,如果曲線首尾相接,那么形成的有限部分也稱為封閉區(qū)域.如何研究這些區(qū)域呢?當(dāng)然離不開(kāi)數(shù),我們可以通過(guò)區(qū)域內(nèi)點(diǎn)的坐標(biāo)規(guī)律來(lái)刻畫(huà)圖形.反過(guò)來(lái),我們也可以根據(jù)點(diǎn)坐標(biāo)的規(guī)律在平面直角坐標(biāo)系內(nèi)找到它們,畫(huà)出相應(yīng)的圖形.聰明的你看懂了嗎?試著做做看.

(1)分別解不等式,并把不等式的解集畫(huà)在同一個(gè)數(shù)軸上;

(2)點(diǎn)P(x,y)在平面直角坐標(biāo)系的第一象限,并且橫坐標(biāo)與縱坐標(biāo)分別滿足不等式,請(qǐng)畫(huà)出滿足條件的點(diǎn)P所在的最大區(qū)域,并求出區(qū)域的面積;

(3)去掉(2)中“點(diǎn)P在第一象限”這個(gè)條件,其余條件保持不變,求滿足條件的點(diǎn)P所在最大區(qū)域與平面直角坐標(biāo)系第二、四象限角平分線所圍成封閉區(qū)域的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案