【題目】(本小題12分)如圖,AB是⊙O的直徑,BC為⊙O的切線,D為⊙O上的一點,CD=CB,延長CD交BA的延長線于點E.
(1)求證:CD為⊙O的切線;
(2)求證:∠C=2∠DBE.
(3)若EA=AO=2,求圖中陰影部分的面積.(結(jié)果保留π)
【答案】(1)詳見解析;(2).
【解析】
試題(1)連接OD,由BC是⊙O的切線,可得∠ABC=90°,由CD=CB,OB=OD,易證得∠ODC=∠ABC=90°,即可證得CD為⊙O的切線.(2)在Rt△OBF中,∠ABD=30°,OF=1,可求得BD的長,∠BOD的度數(shù),又由,即可求得答案.
試題解析:證明:連接OD,
∵BC是⊙O的切線,∴∠ABC=90°,
∵CD=CB, ∴∠CBD=∠CDB,
∵OB=OD,∴∠OBD=∠ODB,
∴∠ODC=∠ABC=90°,即OD⊥CD,
∵點D在⊙O上, ∴CD為⊙O的切線.
(2)如圖,∠DOE=∠ODB+∠OBD=2∠DBE,
由(1)得:OD⊥EC于點D,∴∠E+∠C=∠E+∠DOE=90°,
∴∠C=∠DOE=2∠DBE.
(3)作OF⊥DB于點F,連接AD,
由EA=AO可得:AD是Rt△ODE斜邊的中線,
∴AD=AO=OD,∴∠DOA=60°,∴∠OBD=30°,
又∵OB=AO=2,OF⊥BD,∴ OF=1,BF=,
∴BD=2BF=2,∠BOD=180°-∠DOA =120°,
∴.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖,已知點 A(﹣4,4),一個以 A 為頂點的 45°角繞點 A 旋轉(zhuǎn),角 的兩邊分別交 x 軸正半軸,y 軸負半軸于 E、F,連接 EF.當△AEF 是直角三角形 時,點 E 的坐標是_________
(2)已知實數(shù) x+y=12,則的最小值是_____
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,以點A為圓心,小于AC長為半徑作圓弧,分別交AB,AC于E,F(xiàn)兩點,再分別以E,F(xiàn)為圓心,大于EF長為半徑作圓弧,兩條圓弧交于點P,作射線AP,交CD于點M。
(1)若∠ACD=114°,求∠MAB的度數(shù);
(2)若CN⊥AM,垂足為N,求證:△ACN≌△MCN。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把Rt△ABC放在直角坐標系內(nèi),其中∠CAB=90°,BC=5,點A,B的坐標分別為(1,0),(4,0),將△ABC沿x軸向右平移,當點C落在直線y=2x-6上時,線段BC掃過的面積為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某校教學(xué)樓AB后方有一斜坡,已知斜坡CD的長為12米,坡角α為60°,根據(jù)有關(guān)部門的規(guī)定,∠α≤39°時,才能避免滑坡危險,學(xué)校為了消除安全隱患,決定對斜坡CD進行改造,在保持坡腳C不動的情況下,學(xué)校至少要把坡頂D向后水平移動多少米才能保證教學(xué)樓的安全?(結(jié)果取整數(shù))
(參考數(shù)據(jù):sin39°≈0.63,cos39°≈0.78,tan39°≈0.81,≈1.41,≈1.73,≈2.24)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了更好的開展校園綜合實踐活動,準備購買一批籃球和足球.已知籃球的單價比足球的單價貴40元,花1500元購買的籃球的個數(shù)與花900元購買的足球的個數(shù)恰好相等.
(1)籃球和足球的單價各是多少元?
(2)若學(xué)校恰好用完1000元購買籃球和足球,則籃球和足球購買的都有的方案有哪幾種?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是等邊三角形,是邊上的高,點E是邊的中點,點P是上的一個動點,當最小時,的度數(shù)是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與軸、y軸分別交于A、B兩點,把△AOB繞點A順時針旋轉(zhuǎn)60°后得到△AO′B′,則點B'的坐標是( )
A. (4, ) B. (,4) C. (,3) D. (, )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com