如圖(1),在△ABC和△EDC中,AC=CE=CB=CD,∠ACB=∠ECD=,AB與CE交于F,ED與AB、BC分別交于M、H.
(1)求證:CF=CH;
(2)如圖(2),△ABC不動(dòng),將△EDC繞點(diǎn)C旋轉(zhuǎn)到∠BCE=時(shí),試判斷四邊形ACDM是什么四邊形?并證明你的結(jié)論.
(1)證明:在△ACB和△ECD中
∵∠ACB=∠ECD=
∴∠1+∠ECB=∠2+∠ECB,
∴ ∠1=∠2
又∵AC=CE=CB=CD,
∴∠A=∠D=
∴△ACF≌△DCH,
∴CF=CH
(2)答: 四邊形ACDM是菱形
∵∠ACB=∠ECD=, ∠BCE=
∴∠1=, ∠2=
又∵∠E=∠B=,
∴∠1=∠E, ∠2=∠B
∴AC∥MD, CD∥AM ,
∴四邊形ACDM是平行四邊形
又∵AC=CD,
∴四邊形ACDM是菱形
【解析】首先證出∠1=∠2,然后證出△ACF≌△DCH,從而得出CF=CH;
(2)先證出四邊形ACDM是平行四邊形,然后根據(jù)AC=CD得出四邊形ACDM是菱形。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
3 | 4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
AE |
BE |
ED |
BE |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com